any-script-mcp
Enables execution of arbitrary CLI tools and shell scripts by defining them in YAML configuration files as MCP Tools. Supports custom shells (bash, Python, Node.js, Deno), input parameters passed as environment variables, and flexible timeout settings.
README
any-script-mcp
An MCP server that exposes arbitrary CLI tools and shell scripts as MCP Tools
Overview
An MCP server that publishes commands defined in YAML files as MCP Tools. By defining tools in a configuration file, you can execute arbitrary shell scripts from MCP clients.
Installation
npx
Claude Code:
$ claude mcp add any-script \
-s user \
-- npx any-script-mcp
json:
{
"mcpServers": {
"any-script": {
"command": "npx",
"args": ["any-script-mcp"]
}
}
}
Configuration
Create a configuration file at $XDG_CONFIG_HOME/any-script-mcp/config.yaml (typically ~/.config/any-script-mcp/config.yaml).
You can also specify custom configuration file paths using the ANY_SCRIPT_MCP_CONFIG environment variable:
# Single configuration file
$ ANY_SCRIPT_MCP_CONFIG=/path/to/custom/config.yaml npx any-script-mcp
# Multiple configuration files (Unix/macOS - separated by colon)
$ ANY_SCRIPT_MCP_CONFIG=/path/to/custom.yaml:$XDG_CONFIG_HOME/any-script-mcp/config.yaml npx any-script-mcp
# Multiple configuration files (Windows - separated by semicolon)
$ ANY_SCRIPT_MCP_CONFIG=C:\path\to\custom.yaml;%APPDATA%\any-script-mcp\config.yaml npx any-script-mcp
When multiple configuration files are specified:
- All tools from all files are merged into a single collection
- If the same tool name appears in multiple files, the first occurrence takes precedence
- At least one valid configuration file must be successfully loaded
- This is useful for separating common tools from project-specific or personal customizations
Testing Your Configuration
You can test your configuration using the MCP Inspector:
$ npx @modelcontextprotocol/inspector npx any-script-mcp
This will open a web interface where you can see your registered tools and test them interactively.
Example Configuration
# yaml-language-server: $schema=https://raw.githubusercontent.com/izumin5210/any-script-mcp/main/config.schema.json
tools:
- name: echo
description: Echo a message
inputs:
message:
type: string
description: Message to echo
run: |
echo "Received: $INPUTS__MESSAGE"
- name: git_status
description: Check git status with optional branch
inputs:
branch-name:
type: string
description: Branch to check out
required: false
verbose:
type: boolean
description: Show verbose output
default: false
run: |
if [ -n "${INPUTS__BRANCH_NAME:-}" ]; then
git checkout "$INPUTS__BRANCH_NAME"
fi
if [ "$INPUTS__VERBOSE" = "true" ]; then
git status -v
else
git status
fi
# Delegate search to codex CLI. Inspired by https://github.com/yoshiko-pg/o3-search-mcp
- name: codex-search
description: AI agent with web search for researching latest information, troubleshooting program errors, discussing complex problems and design decisions, exploring advanced library usage, and investigating upgrade paths. Supports natural language queries.
inputs:
prompt:
type: string
description: What you want to search, analyze, or discuss with the AI agent
run: |
codex exec \
--model gpt-5 \
--sandbox workspace-write \
--config "sandbox_workspace_write.network_access=true" \
"$INPUTS__PROMPT" \
--json \
| jq -sr 'map(select(.msg.type == "agent_message") | .msg.message) | last'
timeout: 600000 # 10 minutes for complex AI operations
- name: build
description: Run build process with tests
run: |
npm run build
npm test
timeout: 180000 # 3 minutes for build and test
Configuration Format
Tool Definition
Each tool has the following fields:
name: Tool name (alphanumeric, underscore, and hyphen only)description: Tool descriptioninputs: Input parameter definitions (object format)run: Shell script to executeshell: Shell command to execute the script (optional, default:"bash -e {0}")timeout: Execution timeout in milliseconds (optional, default: 300000 = 5 minutes)
Input Parameters
Each input parameter has the following fields:
type: Parameter type (string,number,boolean)description: Parameter descriptionrequired: Whether the parameter is required (default:true)default: Default value (optional)
Input parameters are passed as environment variables to shell scripts in two ways:
Individual Environment Variables
Variable names have the INPUTS__ prefix and are converted to uppercase (hyphens are converted to underscores).
Examples:
message→$INPUTS__MESSAGEbranch-name→$INPUTS__BRANCH_NAME
JSON Format (INPUTS_JSON)
All inputs are also available as a single JSON object in the INPUTS_JSON environment variable. This preserves type information, making it easier to work with non-shell interpreters.
Example usage:
// Node.js
const inputs = JSON.parse(process.env.INPUTS_JSON);
console.log(inputs.num * 2); // count is a number, not a string
Shell Option
The shell option allows you to specify a custom shell or interpreter for executing scripts. The {0} placeholder is replaced with the path to the temporary script file.
Default: "bash -e {0}"
Examples:
# yaml-language-server: $schema=https://raw.githubusercontent.com/izumin5210/any-script-mcp/main/config.schema.json
tools:
# Python script
- name: python_analysis
description: Analyze data with Python
shell: "python {0}"
inputs:
data:
type: string
description: Data to analyze
run: |
import os
import json
data = os.environ['INPUTS__DATA']
# Process data with Python
result = {"analysis": f"Processed: {data}"}
print(json.dumps(result))
# Deno script
- name: deno_fetch
description: Fetch data with Deno
shell: "deno run --allow-net {0}"
inputs:
endpoint:
type: string
description: API endpoint
run: |
const endpoint = Deno.env.get("INPUTS__ENDPOINT");
const response = await fetch(endpoint);
console.log(await response.json());
# Using INPUTS_JSON for type preservation
- name: add_2
description: add 2 to a number
shell: "node {0}"
inputs:
num:
type: number
description: a number to add 2 to
run: |
const inputs = JSON.parse(process.env.INPUTS_JSON);
console.log(inputs.num + 2); // number is a number, not a string
Advanced Examples - AI Agents with Web Search
# yaml-language-server: $schema=https://raw.githubusercontent.com/izumin5210/any-script-mcp/main/config.schema.json
tools:
- name: gemini-search
description: AI agent with web search using Gemini 2.5 Flash
shell: "deno run -N -E {0}"
inputs:
query:
type: string
description: Query for AI search
required: true
run: |
import { GoogleGenAI } from "npm:@google/genai@^1";
const inputs = JSON.parse(Deno.env.get("INPUTS_JSON"));
const ai = new GoogleGenAI({ apiKey: Deno.env.get("GEMINI_API_KEY") });
const res = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: inputs.query,
config: {
tools: [{ googleSearch: {} }],
systemInstruction: "...",
},
});
console.log(
res.candidates?.[0]?.content?.parts?.map((p) => p.text ?? "").join(""),
);
- name: gpt-5-search
description: AI agent with web search using GPT-5
shell: "deno run -N -E {0}"
inputs:
query:
type: string
description: Query for AI search
required: true
run: |
import OpenAI from "jsr:@openai/openai";
const inputs = JSON.parse(Deno.env.get("INPUTS_JSON"));
const client = new OpenAI({ apiKey: Deno.env.get("OPENAI_API_KEY") });
const res = await client.responses.create({
model: "gpt-5",
tools: [{ type: "web_search_preview" }],
input: inputs.query,
instructions: "...",
});
console.log(res.output_text);
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.
