
ANSES Ciqual MCP Server
Provides SQL access to the ANSES Ciqual French food composition database with nutritional data for over 3,000 foods. Supports full-text search and bilingual queries for comprehensive nutrition analysis.
README
ANSES Ciqual MCP Server
<div align="center">
An MCP (Model Context Protocol) server providing SQL access to the ANSES Ciqual French food composition database. Query nutritional data for over 3,000 foods with full-text search support.
</div>
Features
- 🍎 Comprehensive Database: Access nutritional data for 3,185+ French foods
- 🔍 SQL Interface: Query using standard SQL with full flexibility
- 🌍 Bilingual Support: French and English food names
- 🔤 Fuzzy Search: Built-in full-text search with typo tolerance
- 📊 60+ Nutrients: Detailed composition including vitamins, minerals, macros, and more
- 🔄 Auto-Updates: Automatically refreshes data yearly from ANSES (checks on startup)
- 🔒 Read-Only: Safe queries with no risk of data modification
- 💾 Lightweight: ~10MB SQLite database with efficient indexing
Installation
Via pip
pip install ciqual-mcp
Via uvx (recommended)
uvx ciqual-mcp
From source
git clone https://github.com/zzgael/ciqual-mcp.git
cd ciqual-mcp
pip install -e .
MCP Client Configuration
Claude Desktop
Add to your Claude Desktop configuration:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
Linux: ~/.config/Claude/claude_desktop_config.json
{
"mcpServers": {
"ciqual": {
"command": "uvx",
"args": ["ciqual-mcp"]
}
}
}
Zed
Add to your Zed settings:
{
"assistant": {
"version": "2",
"mcp": {
"servers": {
"ciqual": {
"command": "uvx",
"args": ["ciqual-mcp"]
}
}
}
}
}
Cline (VSCode Extension)
Add to your VSCode settings (settings.json
):
{
"cline.mcpServers": {
"ciqual": {
"command": "uvx",
"args": ["ciqual-mcp"]
}
}
}
Continue.dev
Add to your Continue config (~/.continue/config.json
):
{
"mcpServers": [
{
"name": "ciqual",
"command": "uvx",
"args": ["ciqual-mcp"]
}
]
}
Usage
As an MCP Server
The server implements the Model Context Protocol and exposes a single query
function:
# Start the server standalone (for testing)
ciqual-mcp
Direct Python Usage
from ciqual_mcp.data_loader import initialize_database
# Initialize/update the database
initialize_database()
# Then use SQLite directly
import sqlite3
conn = sqlite3.connect("~/.ciqual/ciqual.db")
cursor = conn.execute("SELECT * FROM foods WHERE alim_nom_eng LIKE '%apple%'")
Database Schema
Tables
foods
- Food items
alim_code
(INTEGER, PK): Unique food identifieralim_nom_fr
(TEXT): French namealim_nom_eng
(TEXT): English namealim_grp_code
(TEXT): Food group code
nutrients
- Nutrient definitions
const_code
(INTEGER, PK): Unique nutrient identifierconst_nom_fr
(TEXT): French nameconst_nom_eng
(TEXT): English nameunit
(TEXT): Measurement unit (g/100g, mg/100g, etc.)
composition
- Nutritional values
alim_code
(INTEGER): Food identifierconst_code
(INTEGER): Nutrient identifierteneur
(REAL): Value per 100gcode_confiance
(TEXT): Confidence level (A/B/C/D)
foods_fts
- Full-text search
Virtual table for fuzzy matching with French/English names
Common Nutrient Codes
Category | Code | Nutrient | Unit |
---|---|---|---|
Energy | 327 | Energy | kJ/100g |
328 | Energy | kcal/100g | |
Macros | 25000 | Protein | g/100g |
31000 | Carbohydrates | g/100g | |
40000 | Fat | g/100g | |
34100 | Fiber | g/100g | |
32000 | Sugars | g/100g | |
Minerals | 10110 | Sodium | mg/100g |
10200 | Calcium | mg/100g | |
10260 | Iron | mg/100g | |
10190 | Potassium | mg/100g | |
Vitamins | 55400 | Vitamin C | mg/100g |
56400 | Vitamin D | µg/100g | |
51330 | Vitamin B12 | µg/100g |
Example Queries
Basic Search
-- Find foods by name
SELECT * FROM foods WHERE alim_nom_eng LIKE '%orange%';
-- Fuzzy search (handles typos)
SELECT * FROM foods_fts WHERE foods_fts MATCH 'orang*';
Nutritional Queries
-- Get vitamin C content for oranges
SELECT f.alim_nom_eng, c.teneur as vitamin_c_mg
FROM foods f
JOIN composition c ON f.alim_code = c.alim_code
WHERE f.alim_nom_eng LIKE '%orange%'
AND c.const_code = 55400;
-- Find foods highest in protein
SELECT f.alim_nom_eng, c.teneur as protein_g
FROM foods f
JOIN composition c ON f.alim_code = c.alim_code
WHERE c.const_code = 25000
ORDER BY c.teneur DESC
LIMIT 10;
-- Compare macros for different foods
SELECT
f.alim_nom_eng as food,
MAX(CASE WHEN c.const_code = 25000 THEN c.teneur END) as protein_g,
MAX(CASE WHEN c.const_code = 31000 THEN c.teneur END) as carbs_g,
MAX(CASE WHEN c.const_code = 40000 THEN c.teneur END) as fat_g,
MAX(CASE WHEN c.const_code = 328 THEN c.teneur END) as calories_kcal
FROM foods f
JOIN composition c ON f.alim_code = c.alim_code
WHERE f.alim_nom_eng IN ('Apple, raw', 'Banana, raw', 'Orange, raw')
AND c.const_code IN (25000, 31000, 40000, 328)
GROUP BY f.alim_code, f.alim_nom_eng;
Dietary Restrictions
-- Find low-sodium foods (<100mg/100g)
SELECT f.alim_nom_eng, c.teneur as sodium_mg
FROM foods f
JOIN composition c ON f.alim_code = c.alim_code
WHERE c.const_code = 10110
AND c.teneur < 100
ORDER BY c.teneur ASC;
-- High-fiber foods (>5g/100g)
SELECT f.alim_nom_eng, c.teneur as fiber_g
FROM foods f
JOIN composition c ON f.alim_code = c.alim_code
WHERE c.const_code = 34100
AND c.teneur > 5
ORDER BY c.teneur DESC;
Data Source
Data is sourced from the official ANSES Ciqual database:
- Website: https://ciqual.anses.fr/
- Data portal: https://www.data.gouv.fr/fr/datasets/table-de-composition-nutritionnelle-des-aliments-ciqual/
The database is automatically updated yearly when the server starts (data hasn't changed since 2020, so yearly updates are sufficient).
Requirements
- Python 3.9 or higher
- 50MB free disk space (for database)
- Internet connection (for initial data download)
License
MIT License - See LICENSE file for details
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Development
Running Tests
# Install development dependencies
pip install -e .
pip install pytest pytest-asyncio
# Run unit tests
python -m pytest tests/test_server.py -v
# Run functional tests (requires database)
python -m pytest tests/test_functional.py -v
Troubleshooting
Database not initializing
- Check internet connection
- Ensure write permissions to
~/.ciqual/
directory - Try manual initialization:
python -m ciqual_mcp.data_loader
XML parsing errors
- The tool handles malformed XML automatically with recovery mode
- If issues persist, delete
~/.ciqual/ciqual.db
and restart
Credits
Developed by Gael Debost as part of GPT Workbench, a multi-LLM interface for medical research developed by Ideagency.
Data provided by ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail).
Citation
If you use this tool in your research, please cite:
@software{ciqual_mcp,
title = {ANSES Ciqual MCP Server},
author = {Gael Debost},
year = {2025},
url = {https://github.com/zzgael/ciqual-mcp}
}
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.