ANSES Ciqual MCP Server

ANSES Ciqual MCP Server

Provides SQL access to the ANSES Ciqual French food composition database with nutritional data for over 3,000 foods. Supports full-text search and bilingual queries for comprehensive nutrition analysis.

Category
Visit Server

README

ANSES Ciqual MCP Server

<div align="center">

Tests PyPI version Python 3.10+ License: MIT MCP Protocol

An MCP (Model Context Protocol) server providing SQL access to the ANSES Ciqual French food composition database. Query nutritional data for over 3,000 foods with full-text search support.

ANSES Ciqual Database

</div>

Features

  • 🍎 Comprehensive Database: Access nutritional data for 3,185+ French foods
  • 🔍 SQL Interface: Query using standard SQL with full flexibility
  • 🌍 Bilingual Support: French and English food names
  • 🔤 Fuzzy Search: Built-in full-text search with typo tolerance
  • 📊 60+ Nutrients: Detailed composition including vitamins, minerals, macros, and more
  • 🔄 Auto-Updates: Automatically refreshes data yearly from ANSES (checks on startup)
  • 🔒 Read-Only: Safe queries with no risk of data modification
  • 💾 Lightweight: ~10MB SQLite database with efficient indexing

Installation

Via pip

pip install ciqual-mcp

Via uvx (recommended)

uvx ciqual-mcp

From source

git clone https://github.com/zzgael/ciqual-mcp.git
cd ciqual-mcp
pip install -e .

MCP Client Configuration

Claude Desktop

Add to your Claude Desktop configuration:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
Linux: ~/.config/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "ciqual": {
      "command": "uvx",
      "args": ["ciqual-mcp"]
    }
  }
}

Zed

Add to your Zed settings:

{
  "assistant": {
    "version": "2",
    "mcp": {
      "servers": {
        "ciqual": {
          "command": "uvx",
          "args": ["ciqual-mcp"]
        }
      }
    }
  }
}

Cline (VSCode Extension)

Add to your VSCode settings (settings.json):

{
  "cline.mcpServers": {
    "ciqual": {
      "command": "uvx",
      "args": ["ciqual-mcp"]
    }
  }
}

Continue.dev

Add to your Continue config (~/.continue/config.json):

{
  "mcpServers": [
    {
      "name": "ciqual",
      "command": "uvx",
      "args": ["ciqual-mcp"]
    }
  ]
}

Usage

As an MCP Server

The server implements the Model Context Protocol and exposes a single query function:

# Start the server standalone (for testing)
ciqual-mcp

Direct Python Usage

from ciqual_mcp.data_loader import initialize_database

# Initialize/update the database
initialize_database()

# Then use SQLite directly
import sqlite3
conn = sqlite3.connect("~/.ciqual/ciqual.db")
cursor = conn.execute("SELECT * FROM foods WHERE alim_nom_eng LIKE '%apple%'")

Database Schema

Tables

foods - Food items

  • alim_code (INTEGER, PK): Unique food identifier
  • alim_nom_fr (TEXT): French name
  • alim_nom_eng (TEXT): English name
  • alim_grp_code (TEXT): Food group code

nutrients - Nutrient definitions

  • const_code (INTEGER, PK): Unique nutrient identifier
  • const_nom_fr (TEXT): French name
  • const_nom_eng (TEXT): English name
  • unit (TEXT): Measurement unit (g/100g, mg/100g, etc.)

composition - Nutritional values

  • alim_code (INTEGER): Food identifier
  • const_code (INTEGER): Nutrient identifier
  • teneur (REAL): Value per 100g
  • code_confiance (TEXT): Confidence level (A/B/C/D)

foods_fts - Full-text search

Virtual table for fuzzy matching with French/English names

Common Nutrient Codes

Category Code Nutrient Unit
Energy 327 Energy kJ/100g
328 Energy kcal/100g
Macros 25000 Protein g/100g
31000 Carbohydrates g/100g
40000 Fat g/100g
34100 Fiber g/100g
32000 Sugars g/100g
Minerals 10110 Sodium mg/100g
10200 Calcium mg/100g
10260 Iron mg/100g
10190 Potassium mg/100g
Vitamins 55400 Vitamin C mg/100g
56400 Vitamin D µg/100g
51330 Vitamin B12 µg/100g

Example Queries

Basic Search

-- Find foods by name
SELECT * FROM foods WHERE alim_nom_eng LIKE '%orange%';

-- Fuzzy search (handles typos)
SELECT * FROM foods_fts WHERE foods_fts MATCH 'orang*';

Nutritional Queries

-- Get vitamin C content for oranges
SELECT f.alim_nom_eng, c.teneur as vitamin_c_mg
FROM foods f
JOIN composition c ON f.alim_code = c.alim_code
WHERE f.alim_nom_eng LIKE '%orange%' 
  AND c.const_code = 55400;

-- Find foods highest in protein
SELECT f.alim_nom_eng, c.teneur as protein_g
FROM foods f
JOIN composition c ON f.alim_code = c.alim_code
WHERE c.const_code = 25000
ORDER BY c.teneur DESC
LIMIT 10;

-- Compare macros for different foods
SELECT 
    f.alim_nom_eng as food,
    MAX(CASE WHEN c.const_code = 25000 THEN c.teneur END) as protein_g,
    MAX(CASE WHEN c.const_code = 31000 THEN c.teneur END) as carbs_g,
    MAX(CASE WHEN c.const_code = 40000 THEN c.teneur END) as fat_g,
    MAX(CASE WHEN c.const_code = 328 THEN c.teneur END) as calories_kcal
FROM foods f
JOIN composition c ON f.alim_code = c.alim_code
WHERE f.alim_nom_eng IN ('Apple, raw', 'Banana, raw', 'Orange, raw')
  AND c.const_code IN (25000, 31000, 40000, 328)
GROUP BY f.alim_code, f.alim_nom_eng;

Dietary Restrictions

-- Find low-sodium foods (<100mg/100g)
SELECT f.alim_nom_eng, c.teneur as sodium_mg
FROM foods f
JOIN composition c ON f.alim_code = c.alim_code
WHERE c.const_code = 10110 
  AND c.teneur < 100
ORDER BY c.teneur ASC;

-- High-fiber foods (>5g/100g)
SELECT f.alim_nom_eng, c.teneur as fiber_g
FROM foods f
JOIN composition c ON f.alim_code = c.alim_code
WHERE c.const_code = 34100 
  AND c.teneur > 5
ORDER BY c.teneur DESC;

Data Source

Data is sourced from the official ANSES Ciqual database:

  • Website: https://ciqual.anses.fr/
  • Data portal: https://www.data.gouv.fr/fr/datasets/table-de-composition-nutritionnelle-des-aliments-ciqual/

The database is automatically updated yearly when the server starts (data hasn't changed since 2020, so yearly updates are sufficient).

Requirements

  • Python 3.9 or higher
  • 50MB free disk space (for database)
  • Internet connection (for initial data download)

License

MIT License - See LICENSE file for details

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Development

Running Tests

# Install development dependencies
pip install -e .
pip install pytest pytest-asyncio

# Run unit tests
python -m pytest tests/test_server.py -v

# Run functional tests (requires database)
python -m pytest tests/test_functional.py -v

Troubleshooting

Database not initializing

  • Check internet connection
  • Ensure write permissions to ~/.ciqual/ directory
  • Try manual initialization: python -m ciqual_mcp.data_loader

XML parsing errors

  • The tool handles malformed XML automatically with recovery mode
  • If issues persist, delete ~/.ciqual/ciqual.db and restart

Credits

Developed by Gael Debost as part of GPT Workbench, a multi-LLM interface for medical research developed by Ideagency.

Data provided by ANSES (Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail).

Citation

If you use this tool in your research, please cite:

@software{ciqual_mcp,
  title = {ANSES Ciqual MCP Server},
  author = {Gael Debost},
  year = {2025},
  url = {https://github.com/zzgael/ciqual-mcp}
}

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured