Animagine MCP
A FastMCP server for the Animagine XL 4.0 image generation experience that provides tools for prompt validation, optimization, and explanation. It also enables the management of local checkpoints and LoRAs to streamline diffusion workflows and ensure consistent prompt structure.
README
Animagine MCP
FastMCP server for the Animagine XL 4.0 image generation experience, providing prompt validation, optimization, explanation, and checkpoint/LoRA management tools.
For AI Agents: This repository includes comprehensive markdown documentation in
02-behavior/,03-contracts/,04-quality/, and05-implementation/directories. These files contain detailed specifications, behavior rules, prompt taxonomies, and implementation guides optimized for AI agent consumption. If you're building AI-powered workflows or need structured guidance for prompt engineering, check out these resources.
For Humans: Welcome! A few friendly reminders:
- Do not commit AI agent files (
.cursor/,.claude/,.copilot/, etc.) ā these are already in.gitignore- Be respectful in discussions ā we're all here to learn and build together
- Help each other ā share your knowledge, ask questions, and contribute back
Let's create something amazing together! šØ
Table of Contents
- Overview
- Quick Start Guide
- Core Tools
- Usage Examples
- REST API
- Advanced Guide
- AI Agent Resources
- Repository Layout
- Contributors Guide
- Support
- License
Overview
Animagine MCP exposes powerful tools through FastMCP (MCP protocol) and FastAPI (REST API):
- Prompt Tools:
validate_prompt,optimize_prompt,explain_prompt - Model Tools:
list_models,load_checkpoint,unload_loras - Generation Tools:
generate_image,generate_image_from_image
Key features:
- Dual API support: Use MCP protocol for AI agents or REST API for web/app integration
- Normalizes prompts for consistent structure, category coverage, and tag ordering
- Integrates with local checkpoint and LoRA assets
- GPU-accelerated image generation with CUDA support
- Docker-ready with comprehensive GPU configuration
- Interactive API documentation with Swagger UI
Choose Your Interface
| Interface | Best For | Port |
|---|---|---|
| MCP Server | Claude Desktop, Cursor, other MCP clients | stdio |
| REST API | Web applications, CLI tools, mobile apps | 8000 |
| REPL | Interactive testing and development | stdin/stdout |
Note: This platform can generate NSFW material. Choosing to do so and owning the resulting content is the caller's responsibility.
Quick Start Guide
Option 1: Docker (Recommended)
The fastest way to get started with GPU acceleration.
What's Included
- Automatic setup: Directories (
checkpoints/,loras/,outputs/) are created automatically - Pre-downloaded model: Animagine XL 4.0 (~6GB) is downloaded during build
- GPU acceleration: CUDA 12.1 with optimized PyTorch
- REST API: FastAPI server on port 8000 with interactive documentation
Prerequisites
- Docker and Docker Compose installed
- NVIDIA GPU with drivers installed (verify with
nvidia-smi) - NVIDIA Container Toolkit (installation guide)
- ~15GB disk space (for Docker image + model)
Steps
Step 1: Clone the repository
git clone https://github.com/gabrielalmir/mcp-animaginexl.git
cd mcp-animaginexl
Step 2: Build and start the container
docker-compose up -d
Note: First build downloads Animagine XL 4.0 (~6GB) and may take 10-20 minutes depending on your connection. Subsequent builds use cached layers.
Step 3: Verify startup (watch logs)
docker-compose logs -f
You should see:
=== Animagine MCP Startup ===
Checking directories...
ā /app/checkpoints
ā /app/loras
ā /app/outputs
Verifying Animagine XL 4.0 model...
ā Model already cached
Checking GPU status...
ā GPU Available: NVIDIA GeForce RTX 3090
ā CUDA Version: 12.1
=== Starting Animagine MCP Server ===
Step 4: Access the services
REST API:
- API Documentation: http://localhost:8000/docs (Swagger UI)
- Alternative docs: http://localhost:8000/redoc (ReDoc)
- Health check:
curl http://localhost:8000/health
MCP Server (for Claude Desktop, Cursor, etc.):
- Stdio endpoint available to MCP clients
- See MCP Client Configuration
Quick Docker Commands
| Command | Description |
|---|---|
docker-compose up -d |
Start the server |
docker-compose down |
Stop the server |
docker-compose logs -f |
View logs |
docker-compose exec animagine-mcp bash |
Shell access |
docker-compose build --no-cache |
Rebuild from scratch |
Environment Variables
| Variable | Description | Default |
|---|---|---|
SKIP_MODEL_DOWNLOAD |
Skip model verification on startup | false |
Option 1b: REST API Only
If you only want to use the REST API without MCP protocol support:
# Run the API server directly (requires local Python 3.11+)
pip install -e .
animagine-api
The API will be available at http://localhost:8000 with full documentation at /docs.
Option 2: Local Installation
For development or systems without Docker.
Prerequisites
- Python >= 3.11
- GPU with CUDA support (recommended)
gitandpip
Steps
Step 1: Clone and create virtual environment
git clone https://github.com/gabrielalmir/mcp-animaginexl.git
cd mcp-animaginexl
python -m venv .venv
Step 2: Activate the virtual environment
Windows:
.venv\Scripts\activate
Linux/macOS:
source .venv/bin/activate
Step 3: Install dependencies
pip install -e .
Step 4: Start the MCP server
animagine-mcp
Step 5: Verify it's running
The server is now exposing tools via FastMCP at the default endpoint.
Option 3: Interactive REPL (Testing)
Test MCP tools interactively without running the full server.
Quick Start
# From project root (no installation needed)
python repl.py
# Or if installed
animagine-repl
REPL Interface
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā
ā Animagine MCP REPL ā
ā Interactive Tool Testing ā
ā āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā£
ā Commands: ā
ā help - Show help message ā
ā tools - List available tools ā
ā tool <name> - Show tool details ā
ā exit - Exit the REPL ā
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā
animagine> validate_prompt("1girl, blue hair, masterpiece")
{
"is_valid": true,
"issues": [],
"suggestions": [...]
}
animagine> optimize_prompt(description="anime girl in a garden")
{
"optimized_prompt": "1girl, solo, garden, flowers, ..., masterpiece, best quality",
"actions": [...]
}
CLI Options
python repl.py --list # List all tools
python repl.py --tool validate # Show tool details
python repl.py -e "list_models()" # Execute single command
python repl.py --debug # Enable debug mode
MCP Client Configuration
To connect an MCP client (like Claude Desktop, VS Code, or other MCP-compatible tools) to this server, create a .mcp.json configuration file.
Example .mcp.json
For local installation:
{
"mcpServers": {
"animagine": {
"command": "animagine-mcp",
"env": {}
}
}
}
For development (running from source):
{
"mcpServers": {
"animagine": {
"command": "python",
"args": ["-m", "animagine_mcp.server"],
"cwd": "/path/to/mcp-animaginexl",
"env": {
"PYTHONPATH": "/path/to/mcp-animaginexl/src"
}
}
}
}
For Docker:
{
"mcpServers": {
"animagine": {
"command": "docker",
"args": ["exec", "-i", "animagine-mcp-server", "animagine-mcp"],
"env": {}
}
}
}
Windows example:
{
"mcpServers": {
"animagine": {
"command": "python",
"args": ["-m", "animagine_mcp.server"],
"cwd": "C:\\Users\\YourName\\Projects\\mcp-animaginexl",
"env": {
"PYTHONPATH": "C:\\Users\\YourName\\Projects\\mcp-animaginexl\\src"
}
}
}
}
Configuration Options
| Field | Description |
|---|---|
command |
Executable to run (animagine-mcp, python, or docker) |
args |
Command line arguments |
cwd |
Working directory (optional) |
env |
Environment variables (optional) |
Where to Place .mcp.json
Depending on your MCP client:
- Claude Desktop:
~/.config/claude/mcp.json(Linux/Mac) or%APPDATA%\Claude\mcp.json(Windows) - VS Code: Project root or workspace settings
- Other clients: Check client documentation
Core Tools
The same powerful tools are available through both MCP protocol and REST API:
Prompt Tools
| Tool | MCP Call | REST Endpoint | Description |
|---|---|---|---|
validate_prompt |
validate_prompt(...) |
POST /api/v1/validate-prompt |
Validates prompt against Animagine XL rules |
optimize_prompt |
optimize_prompt(...) |
POST /api/v1/optimize-prompt |
Restructures and optimizes prompt tags |
explain_prompt |
explain_prompt(...) |
POST /api/v1/explain-prompt |
Explains each tag's category and effect |
Model Tools
| Tool | MCP Call | REST Endpoint | Description |
|---|---|---|---|
list_models |
list_models() |
GET /api/v1/models |
Lists available checkpoints and LoRAs |
load_checkpoint |
load_checkpoint(...) |
POST /api/v1/load-checkpoint |
Pre-loads a checkpoint to GPU memory |
unload_loras |
unload_loras() |
POST /api/v1/unload-loras |
Removes all LoRA weights from pipeline |
Generation Tools
| Tool | MCP Call | REST Endpoint | Description |
|---|---|---|---|
generate_image |
generate_image(...) |
POST /api/v1/generate |
Generates image from prompt |
generate_image_from_image |
generate_image_from_image(...) |
POST /api/v1/generate-img2img |
Image-to-image transformation |
Using the REST API
For detailed REST API documentation, see API.md which includes:
- Full endpoint reference
- Request/response examples
- cURL examples
- Python client examples
- Performance tuning guide
Quick start:
# List available models
curl http://localhost:8000/api/v1/models
# Generate an image
curl -X POST http://localhost:8000/api/v1/generate \
-H "Content-Type: application/json" \
-d '{
"prompt": "masterpiece, best quality, anime girl",
"steps": 28
}'
# Interactive documentation
open http://localhost:8000/docs
Usage Examples
Example 1: Validate a Prompt
# Validate before generation
result = validate_prompt(
prompt="1girl, blue hair, school uniform",
width=832,
height=1216
)
print(result) # Shows issues and suggestions
Example 2: Optimize a Natural Language Description
# Convert description to optimized tags
result = optimize_prompt(
description="A beautiful anime girl with long silver hair standing in a flower field at sunset"
)
print(result["optimized_prompt"])
Example 3: Generate an Image
# Generate with default settings
result = generate_image(
prompt="1girl, silver hair, flower field, sunset, masterpiece, best quality",
steps=28,
guidance_scale=5.0
)
print(f"Image saved to: {result['image_path']}")
Example 4: Use Custom Checkpoint and LoRA
# List available models first
models = list_models()
print(models["checkpoints"])
print(models["loras"])
# Generate with custom models
result = generate_image(
prompt="1girl, anime style, masterpiece",
checkpoint="custom_model.safetensors",
loras=["style_lora.safetensors"],
lora_scales=[0.8]
)
REST API
For full REST API documentation with detailed examples, see API.md.
Quick Reference
Base URL: http://localhost:8000/api/v1
Interactive Documentation: http://localhost:8000/docs
Common Endpoints:
POST /validate-prompt- Validate a promptPOST /optimize-prompt- Optimize a promptPOST /explain-prompt- Explain prompt tagsGET /models- List available modelsPOST /load-checkpoint- Load a checkpointPOST /generate- Generate an imagePOST /generate-img2img- Transform an image
Example: Generate an image via REST API
curl -X POST http://localhost:8000/api/v1/generate \
-H "Content-Type: application/json" \
-d '{
"prompt": "masterpiece, best quality, anime girl, blue hair",
"steps": 28,
"guidance_scale": 5.0
}'
Advanced Guide
GPU Acceleration
GPU acceleration provides 10-50x faster generation compared to CPU.
Requirements
- NVIDIA GPU (GTX 1060 or newer recommended)
- CUDA drivers installed
- For Docker: NVIDIA Container Runtime
Verify GPU Setup
# Check NVIDIA driver
nvidia-smi
# Check PyTorch GPU support (in container or local env)
python -c "import torch; print(torch.cuda.is_available())"
GPU Performance Tips
-
Pre-load checkpoints to reduce first-generation latency:
load_checkpoint("default") # Pre-loads Animagine XL 4.0 -
Monitor GPU usage during generation:
watch -n 1 nvidia-smi -
Optimize memory for large models:
# Set in environment export PYTORCH_CUDA_ALLOC_CONF="max_split_size_mb:512"
See GPU_SETUP.md for detailed GPU configuration.
Docker Configuration
Three Docker Compose configurations are available:
| File | Description | Use Case |
|---|---|---|
docker-compose.yml |
GPU-enabled (default) | Production with NVIDIA GPU |
docker-compose.gpu.yml |
Advanced GPU settings | Multi-GPU, profiling |
docker-compose.cpu.yml |
CPU-only fallback | Development, no GPU |
Switching Configurations
# GPU (default)
docker-compose up -d
# Advanced GPU
docker-compose -f docker-compose.gpu.yml up -d
# CPU-only
docker-compose -f docker-compose.cpu.yml up -d
Custom Port
Edit docker-compose.yml:
ports:
- "8001:8000" # Change 8001 to desired port
Resource Limits
deploy:
resources:
limits:
memory: 8G # Increase for larger models
See DOCKER.md for comprehensive Docker documentation.
Model Management
Adding Checkpoints
Place .safetensors or .ckpt files in ./checkpoints/:
cp my_model.safetensors ./checkpoints/
Adding LoRAs
Place LoRA files in ./loras/:
cp my_lora.safetensors ./loras/
Verifying Models
models = list_models()
print("Checkpoints:", models["checkpoints"])
print("LoRAs:", models["loras"])
print("Currently loaded:", models["currently_loaded"])
Environment Variables
| Variable | Description | Default |
|---|---|---|
CUDA_VISIBLE_DEVICES |
GPU device ID(s) | 0 |
TORCH_CUDNN_BENCHMARK |
Enable cuDNN auto-tuner | 1 |
PYTORCH_CUDA_ALLOC_CONF |
Memory allocation config | max_split_size_mb:512 |
HF_HOME |
Hugging Face cache directory | ~/.cache/huggingface |
HF_HUB_DISABLE_TELEMETRY |
Disable HF telemetry | 1 |
Setting Variables
Local:
export CUDA_VISIBLE_DEVICES=0
animagine-mcp
Docker (in docker-compose.yml):
environment:
CUDA_VISIBLE_DEVICES: "0,1" # Use GPUs 0 and 1
Performance Optimization
Recommended Settings by GPU
| GPU | VRAM | Recommended Steps | Batch Size |
|---|---|---|---|
| RTX 3060 | 12GB | 28 | 1 |
| RTX 3080 | 10GB | 28 | 1 |
| RTX 3090 | 24GB | 28-50 | 1-2 |
| RTX 4090 | 24GB | 28-50 | 2-4 |
| A100 | 40GB+ | 50+ | 4+ |
Speed vs Quality Trade-offs
| Setting | Speed | Quality |
|---|---|---|
steps=20 |
Fast | Good |
steps=28 |
Balanced | Great |
steps=50 |
Slow | Excellent |
Using LCM LoRA for Speed
# 4-8x faster generation with LCM
result = generate_image(
prompt="1girl, masterpiece",
loras=["custom_lora.safetensors"],
steps=8, # Reduced from 28
guidance_scale=1.5 # Reduced from 5.0
)
AI Agent Resources
This repository includes comprehensive documentation optimized for AI agents and automated workflows.
Documentation Structure
| Directory | Purpose | Key Files |
|---|---|---|
02-behavior/ |
Model behavior specifications | model-behavior-spec.md, prompt-rulebook.md, prompt-taxonomy.yaml |
03-contracts/ |
Interface contracts and schemas | mcp-interface-contract.md, config-defaults-spec.md, error-handling-spec.md |
04-quality/ |
Quality guidelines and strategies | quality-evaluation-guide.md, negative-prompt-strategy.md, prompt-cookbook.md |
05-implementation/ |
Implementation guides | implementation-guide.md, mcp-tooling-notes.md |
For AI Agent Developers
These resources are designed for:
- Prompt Engineering: Detailed taxonomy and rules for Animagine XL 4.0 prompts
- Automated Pipelines: Structured contracts for integrating with CI/CD or batch processing
- Quality Assurance: Evaluation criteria and negative prompt strategies
- MCP Integration: Interface specifications for building MCP-compatible clients
Quick Links
# View behavior specifications
cat 02-behavior/model-behavior-spec.md
# View prompt rules and taxonomy
cat 02-behavior/prompt-rulebook.md
cat 02-behavior/prompt-taxonomy.yaml
# View MCP interface contract
cat 03-contracts/mcp-interface-contract.md
# View quality guidelines
cat 04-quality/prompt-cookbook.md
Using with AI Coding Assistants
When using AI coding assistants (Claude, Cursor, Copilot, etc.), you can reference these docs:
"Read 02-behavior/prompt-rulebook.md and help me create a valid Animagine prompt"
"Based on 03-contracts/mcp-interface-contract.md, implement a client for this MCP"
"Use 04-quality/negative-prompt-strategy.md to improve my negative prompts"
Repository Layout
mcp-animaginexl/
āāā src/animagine_mcp/ # Core package
ā āāā contracts/ # Data schemas and errors
ā āāā diffusion/ # Diffusion pipeline wrapper
ā āāā prompt/ # Prompt processing tools
ā āāā server.py # FastMCP server definition
ā āāā repl.py # Interactive REPL module
āāā checkpoints/ # Model checkpoints (.safetensors) [auto-created]
āāā loras/ # LoRA modifiers [auto-created]
āāā outputs/ # Generated images [auto-created]
āāā 02-behavior/ # Behavior specifications
āāā 03-contracts/ # Interface contracts
āāā 04-quality/ # Quality guidelines
āāā 05-implementation/ # Implementation notes
āāā .mcp.json.example # MCP client config template
āāā Dockerfile # GPU-optimized container
āāā docker-entrypoint.sh # Container startup script
āāā docker-compose.yml # Default GPU config
āāā docker-compose.gpu.yml # Advanced GPU config
āāā docker-compose.cpu.yml # CPU-only fallback
āāā repl.py # Interactive REPL (run directly)
āāā pyproject.toml # Project metadata
āāā README.md # This file
Contributors Guide
We welcome contributions! Here's how to get started.
Development Setup
Step 1: Fork and clone
git clone https://github.com/YOUR_USERNAME/mcp-animaginexl.git
cd mcp-animaginexl
Step 2: Create development environment
python -m venv .venv
source .venv/bin/activate # or .venv\Scripts\activate on Windows
Step 3: Install with development dependencies
pip install -e ".[dev]"
Step 4: Create a feature branch
git checkout -b feature/your-feature-name
Code Style
We follow these conventions:
Python Style
- Formatter:
blackwith default settings - Linter:
rufffor fast linting - Type hints: Required for all public functions
- Docstrings: Google style for all public APIs
Run Formatting
# Format code
black src/
# Lint code
ruff check src/
# Fix auto-fixable issues
ruff check --fix src/
Pre-commit (Recommended)
# Install pre-commit hooks
pip install pre-commit
pre-commit install
# Run on all files
pre-commit run --all-files
Pull Request Process
1. Before Submitting
- [ ] Code follows the style guide
- [ ] Tests pass locally
- [ ] Documentation updated (if applicable)
- [ ] Commit messages are clear and descriptive
2. PR Template
Use this template for your PR description:
## Summary
Brief description of changes.
## Changes
- Change 1
- Change 2
## Testing
How was this tested?
## Related Issues
Fixes #123
3. Review Process
- Submit PR to
mainbranch - Automated checks run (linting, tests)
- Maintainer reviews code
- Address feedback if any
- PR merged after approval
4. Commit Message Format
type: short description
Longer description if needed.
Fixes #123
Types: feat, fix, docs, style, refactor, test, chore
Examples:
feat: add batch generation support
fix: resolve CUDA OOM error with large images
docs: update GPU setup instructions
Testing Guidelines
Running Tests
# Run all tests
pytest tests/
# Run with coverage
pytest tests/ --cov=src/animagine_mcp
# Run specific test file
pytest tests/test_prompt.py
Writing Tests
# tests/test_prompt.py
import pytest
from animagine_mcp.prompt import validate_prompt
def test_validate_prompt_basic():
"""Test basic prompt validation."""
result = validate_prompt("1girl, blue hair, masterpiece")
assert result.is_valid
assert len(result.issues) == 0
def test_validate_prompt_missing_quality():
"""Test validation catches missing quality tags."""
result = validate_prompt("1girl, blue hair")
assert not result.is_valid
assert any("quality" in issue.lower() for issue in result.issues)
Test Categories
| Category | Description | Location |
|---|---|---|
| Unit | Individual functions | tests/unit/ |
| Integration | Component interaction | tests/integration/ |
| E2E | Full workflow | tests/e2e/ |
Areas for Contribution
Looking for something to work on? Here are some areas:
Good First Issues
- Documentation improvements
- Adding test coverage
- Fixing typos or clarifying comments
Feature Ideas
- Additional prompt optimization strategies
- New LoRA management features
- Performance benchmarking tools
- Web UI frontend
Documentation
- Tutorials for specific use cases
- Video walkthroughs
- Translated documentation
Support
Getting Help
- Check existing issues: Search GitHub Issues
- Read documentation: Check
DOCKER.md,GPU_SETUP.md, and this README - Open new issue: Include:
- Description of the problem
- Steps to reproduce
- Expected vs actual behavior
- System info (OS, GPU, Python version)
- Relevant logs (omit sensitive content)
Community
- GitHub Discussions for questions
- Issues for bugs and feature requests
License
This project is licensed under the terms specified in LICENSE.
Acknowledgments
- Animagine XL by Cagliostro Lab
- FastMCP for the MCP framework
- Diffusers by Hugging Face
- All contributors and community members
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.