
Amazon VPC Lattice MCP Server
A Model Context Protocol server that provides tools for accessing and managing AWS VPC Lattice information, allowing users to list sources and retrieve sample prompts related to AWS networking documentation.
Tools
list_sources
List all available sources with their URLs and sample prompts
get_source_prompts
Get sample prompts for a specific source
README
Amazon VPC Lattice MCP Server
A Model Context Protocol (MCP) server that provides tools for accessing and managing source information.
Features
The server provides five main tools:
list_sources
: Lists all available sources with their URLsget_source_prompts
: Gets sample prompts for a specific sourcelist_prompts
: Lists all available prompt templatesget_prompts
: Gets details of a specific prompt templatevpc_lattice_cli
: Execute AWS CLI VPC Lattice commands for managing VPC Lattice resources
Installation
- Clone the repository:
git clone https://github.com/yourusername/amazon-vpc-lattice-mcp-server.git
cd amazon-vpc-lattice-mcp-server
- Install dependencies:
npm install
- Build the server:
npm run build
Configuration
Add the server to your MCP settings file (located at ~/Library/Application Support/Code/User/globalStorage/asbx.amzn-cline/settings/cline_mcp_settings.json
):
{
"mcpServers": {
"amazon-vpc-lattice-mcp": {
"command": "node",
"args": ["/path/to/amazon-vpc-lattice-mcp-server/build/index.js"],
"disabled": false,
"autoApprove": [],
"env": {}
}
}
}
Usage
Once configured, you can use the MCP tools in your conversations:
List Sources
use_mcp_tool({
server_name: "amazon-vpc-lattice-mcp",
tool_name: "list_sources",
arguments: {}
})
Get Source Prompts
use_mcp_tool({
server_name: "amazon-vpc-lattice-mcp",
tool_name: "get_source_prompts",
arguments: {
source_name: "AWS Documentation"
}
})
List Prompts
use_mcp_tool({
server_name: "amazon-vpc-lattice-mcp",
tool_name: "list_prompts",
arguments: {}
})
Get Prompt Details
use_mcp_tool({
server_name: "amazon-vpc-lattice-mcp",
tool_name: "get_prompts",
arguments: {
prompt_name: "EKS Controller Setup"
}
})
VPC Lattice CLI
The vpc_lattice_cli
tool provides a programmatic interface to AWS VPC Lattice operations through the AWS CLI.
Features
- Supports all major VPC Lattice CLI operations
- Accepts command arguments as JavaScript objects
- Automatically converts camelCase parameters to CLI-style kebab-case
- Handles boolean flags, arrays, and complex values
- Supports AWS profiles and region configuration
- Returns parsed JSON responses
Available Commands
- Service Network: create-service-network, delete-service-network, get-service-network, list-service-networks, update-service-network
- Service: create-service, delete-service, get-service, list-services, update-service
- Listener: create-listener, delete-listener, get-listener, list-listeners, update-listener
- Rule: create-rule, delete-rule, get-rule, list-rules, update-rule
- Target Group: create-target-group, delete-target-group, get-target-group, list-target-groups, update-target-group
- Target Management: register-targets, deregister-targets, list-targets
- Resource Tags: list-tags-for-resource, tag-resource, untag-resource
Examples
List service networks:
use_mcp_tool({
server_name: "amazon-vpc-lattice-mcp",
tool_name: "vpc_lattice_cli",
arguments: {
command: "list-service-networks",
region: "us-west-2"
}
})
Create a service network:
use_mcp_tool({
server_name: "amazon-vpc-lattice-mcp",
tool_name: "vpc_lattice_cli",
arguments: {
command: "create-service-network",
args: {
name: "my-network",
authType: "NONE"
}
}
})
Create a service with tags:
use_mcp_tool({
server_name: "amazon-vpc-lattice-mcp",
tool_name: "vpc_lattice_cli",
arguments: {
command: "create-service",
args: {
name: "my-service",
serviceNetworkIdentifier: "sn-12345",
tags: [
{ key: "Environment", value: "Production" }
]
}
}
})
Create a target group:
use_mcp_tool({
server_name: "amazon-vpc-lattice-mcp",
tool_name: "vpc_lattice_cli",
arguments: {
command: "create-target-group",
args: {
name: "my-target-group",
type: "INSTANCE",
config: {
port: 80,
protocol: "HTTP",
healthCheck: {
enabled: true,
protocol: "HTTP",
path: "/health"
}
}
}
}
})
Register targets:
use_mcp_tool({
server_name: "amazon-vpc-lattice-mcp",
tool_name: "vpc_lattice_cli",
arguments: {
command: "register-targets",
args: {
targetGroupIdentifier: "tg-12345",
targets: [
{ id: "i-1234567890abcdef0", port: 80 }
]
}
}
})
Available Sources
The server includes these sources:
- AWS Documentation (docs.aws.amazon.com)
- GitHub Repo for AWS Gateway API Controller for VPC Lattice (aws/aws-application-networking-k8s)
- Kubernetes Gateway API (gateway-api.sigs.k8s.io)
Development
Project Structure
src/index.ts
: Main server implementationpackage.json
: Project configuration and dependenciestsconfig.json
: TypeScript configuration.gitignore
: Git ignore rules
Available Prompts
The server includes these prompt templates:
-
EKS Controller Setup
- Guide for setting up the AWS Application Networking Controller for Kubernetes
- Parameters: cluster_name, region, k8s_version
-
EKS Controller Tests
- Run unit and integration tests for the AWS Application Networking Controller
- Parameters: test_type, test_suite, test_filter, verbosity
- Supports both unit tests and integration tests with e2e-clean
-
EKS Controller Issue Solution
- Create solutions for GitHub issues with proper testing and PR creation
- Parameters: issue_number, branch_name
- Includes presubmit checks and draft PR creation
-
Code Review
- Review code changes and provide feedback
- Parameters: code
-
Bug Analysis
- Analyze error messages and suggest fixes
- Parameters: error, context
-
Architecture Review
- Review system architecture and provide recommendations
- Parameters: design
-
Documentation Generator
- Generate documentation for code or APIs
- Parameters: code
-
Security Review
- Review code or architecture for security concerns
- Parameters: target
Adding New Sources
To add new sources, modify the sources
array in src/index.ts
:
const sources = [
{
name: 'Your Source',
url: 'https://your-source-url.com',
prompts: [
'Sample prompt 1 {placeholder}',
'Sample prompt 2 {placeholder}'
]
}
// ... existing sources
];
Adding New Prompts
To add new prompt templates, modify the prompts
array in src/index.ts
:
const prompts = [
{
name: 'Your Prompt Template',
description: 'Description of what the prompt does',
template: 'Your prompt template with {parameter} placeholders',
parameters: ['parameter']
}
// ... existing prompts
];
Scripts
npm run build
: Build the servernpm run watch
: Watch mode for development
License
[Add your license information here]
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.