Amazon Managed Prometheus MCP Server

Amazon Managed Prometheus MCP Server

Enables access to Amazon Managed Prometheus workspaces through natural language queries. Supports listing workspaces, executing PromQL queries, and retrieving workspace details and metrics with AWS authentication.

Category
Visit Server

README

Amazon Managed Prometheus MCP Server

An MCP (Model Context Protocol) server that provides access to Amazon Managed Prometheus workspaces using the FastMCP SDK and uv for fast Python package management.

Features

  • List Amazon Managed Prometheus workspaces
  • Get workspace details and configuration
  • Query metrics from Prometheus workspaces
  • Execute PromQL queries
  • Get workspace status and metadata
  • Fast dependency management with uv

Prerequisites

  1. Install uv (if not already installed):

    # On macOS and Linux
    curl -LsSf https://astral.sh/uv/install.sh | sh
    
    # On Windows
    powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
    
    # Or with pip
    pip install uv
    
  2. AWS Credentials: Configure AWS credentials (one of the following):

    • AWS CLI: aws configure
    • Environment variables: AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION
    • IAM roles (if running on EC2)

Installation

Quick Start with uv

# Clone or navigate to the project directory
cd prometheus-mcp-server

# Create virtual environment and install dependencies
uv sync

# Activate the virtual environment
source .venv/bin/activate  # On Unix/macOS
# or
.venv\Scripts\activate     # On Windows

# Run the server
uv run prometheus-mcp-server

Development Installation

# Install with development dependencies
uv sync --extra dev

# Install with test dependencies
uv sync --extra test

# Install all optional dependencies
uv sync --all-extras

Alternative Installation Methods

# Install in editable mode
uv pip install -e .

# Install from PyPI (when published)
uv pip install prometheus-mcp-server

# Install specific version
uv pip install prometheus-mcp-server==0.1.0

Usage

Running the MCP Server

# Using uv run (recommended)
uv run prometheus-mcp-server

# Or after activating virtual environment
prometheus-mcp-server

# Run with specific region
AWS_REGION=us-west-2 uv run prometheus-mcp-server

Testing the Server

# Run all tests
uv run pytest

# Run tests with coverage
uv run pytest --cov=prometheus_mcp_server

# Run integration tests
uv run python test_demo.py

# Run simple server test
uv run python src/prometheus_mcp_server/simple_server.py

Development Commands

# Format code
uv run black src/ tests/
uv run isort src/ tests/

# Lint code
uv run ruff check src/ tests/

# Type checking
uv run mypy src/

# Run all quality checks
uv run black --check src/ tests/
uv run isort --check-only src/ tests/
uv run ruff check src/ tests/
uv run mypy src/
uv run pytest

Required AWS Permissions

The server requires the following AWS permissions:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "aps:ListWorkspaces",
                "aps:DescribeWorkspace",
                "aps:QueryMetrics"
            ],
            "Resource": "*"
        }
    ]
}

Available Tools

  • list_workspaces: List all Amazon Managed Prometheus workspaces
  • get_workspace: Get detailed information about a specific workspace
  • query_metrics: Execute PromQL queries against a workspace
  • get_workspace_status: Get the current status of a workspace

Configuration

Environment Variables

# AWS Configuration
export AWS_REGION=us-east-1
export AWS_ACCESS_KEY_ID=your_access_key
export AWS_SECRET_ACCESS_KEY=your_secret_key

# Optional: Enable debug logging
export LOG_LEVEL=DEBUG

MCP Client Configuration

Example configuration for MCP clients:

{
  "mcpServers": {
    "prometheus": {
      "command": "uv",
      "args": [
        "run", 
        "--directory", 
        "/path/to/prometheus-mcp-server",
        "prometheus-mcp-server"
      ],
      "env": {
        "AWS_REGION": "us-east-1"
      }
    }
  }
}

Development with uv

Adding Dependencies

# Add runtime dependency
uv add boto3

# Add development dependency
uv add --dev pytest

# Add optional dependency
uv add --optional test pytest-mock

Managing Python Versions

# Use specific Python version
uv python install 3.11
uv sync --python 3.11

# List available Python versions
uv python list

Virtual Environment Management

# Create virtual environment
uv venv

# Activate virtual environment
source .venv/bin/activate

# Deactivate
deactivate

# Remove virtual environment
rm -rf .venv

Project Structure

prometheus-mcp-server/
├── src/prometheus_mcp_server/
│   ├── __init__.py          # Package initialization
│   ├── main.py              # Main MCP server with FastMCP tools
│   ├── auth.py              # AWS SigV4 authentication utilities
│   ├── client.py            # Enhanced client with authentication
│   └── simple_server.py     # Simple test server
├── tests/
│   ├── test_prometheus_server.py  # Original unit tests
│   └── test_simple_server.py      # Simple server tests
├── examples/
│   ├── example_usage.py     # Usage examples
│   └── mcp_config.json      # MCP client configuration
├── pyproject.toml           # Project configuration with uv support
├── .python-version          # Python version specification
├── README.md                # This file
├── test_demo.py            # Comprehensive test demonstration
└── TEST_RESULTS.md         # Test results documentation

Performance Benefits with uv

  • Fast Installation: Up to 10-100x faster than pip
  • Reliable Resolution: Better dependency resolution
  • Disk Efficient: Shared package cache
  • Reproducible Builds: Lock file ensures consistency
  • Cross-Platform: Works on Windows, macOS, and Linux

Troubleshooting

Common Issues

  1. FastMCP not found:

    # Install FastMCP from GitHub
    uv add git+https://github.com/jlowin/fastmcp.git
    
  2. AWS Credentials Error:

    # Configure AWS credentials
    aws configure
    # or set environment variables
    export AWS_ACCESS_KEY_ID=your_key
    export AWS_SECRET_ACCESS_KEY=your_secret
    
  3. Permission Denied:

    • Ensure IAM user/role has required AMP permissions
    • Check AWS region configuration

Debug Mode

# Enable verbose logging
LOG_LEVEL=DEBUG uv run prometheus-mcp-server

# Run with AWS debug
AWS_DEBUG=1 uv run prometheus-mcp-server

Contributing

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature-name
  3. Install development dependencies: uv sync --extra dev
  4. Make your changes
  5. Run tests: uv run pytest
  6. Run quality checks: uv run black src/ && uv run ruff check src/
  7. Commit your changes: git commit -am 'Add feature'
  8. Push to the branch: git push origin feature-name
  9. Create a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Changelog

v0.1.0

  • Initial release
  • Basic workspace listing and querying
  • AWS authentication support
  • Multi-region support
  • uv package management integration

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured