
Amazon Managed Prometheus MCP Server
Enables access to Amazon Managed Prometheus workspaces through natural language queries. Supports listing workspaces, executing PromQL queries, and retrieving workspace details and metrics with AWS authentication.
README
Amazon Managed Prometheus MCP Server
An MCP (Model Context Protocol) server that provides access to Amazon Managed Prometheus workspaces using the FastMCP SDK and uv
for fast Python package management.
Features
- List Amazon Managed Prometheus workspaces
- Get workspace details and configuration
- Query metrics from Prometheus workspaces
- Execute PromQL queries
- Get workspace status and metadata
- Fast dependency management with
uv
Prerequisites
-
Install uv (if not already installed):
# On macOS and Linux curl -LsSf https://astral.sh/uv/install.sh | sh # On Windows powershell -c "irm https://astral.sh/uv/install.ps1 | iex" # Or with pip pip install uv
-
AWS Credentials: Configure AWS credentials (one of the following):
- AWS CLI:
aws configure
- Environment variables:
AWS_ACCESS_KEY_ID
,AWS_SECRET_ACCESS_KEY
,AWS_REGION
- IAM roles (if running on EC2)
- AWS CLI:
Installation
Quick Start with uv
# Clone or navigate to the project directory
cd prometheus-mcp-server
# Create virtual environment and install dependencies
uv sync
# Activate the virtual environment
source .venv/bin/activate # On Unix/macOS
# or
.venv\Scripts\activate # On Windows
# Run the server
uv run prometheus-mcp-server
Development Installation
# Install with development dependencies
uv sync --extra dev
# Install with test dependencies
uv sync --extra test
# Install all optional dependencies
uv sync --all-extras
Alternative Installation Methods
# Install in editable mode
uv pip install -e .
# Install from PyPI (when published)
uv pip install prometheus-mcp-server
# Install specific version
uv pip install prometheus-mcp-server==0.1.0
Usage
Running the MCP Server
# Using uv run (recommended)
uv run prometheus-mcp-server
# Or after activating virtual environment
prometheus-mcp-server
# Run with specific region
AWS_REGION=us-west-2 uv run prometheus-mcp-server
Testing the Server
# Run all tests
uv run pytest
# Run tests with coverage
uv run pytest --cov=prometheus_mcp_server
# Run integration tests
uv run python test_demo.py
# Run simple server test
uv run python src/prometheus_mcp_server/simple_server.py
Development Commands
# Format code
uv run black src/ tests/
uv run isort src/ tests/
# Lint code
uv run ruff check src/ tests/
# Type checking
uv run mypy src/
# Run all quality checks
uv run black --check src/ tests/
uv run isort --check-only src/ tests/
uv run ruff check src/ tests/
uv run mypy src/
uv run pytest
Required AWS Permissions
The server requires the following AWS permissions:
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"aps:ListWorkspaces",
"aps:DescribeWorkspace",
"aps:QueryMetrics"
],
"Resource": "*"
}
]
}
Available Tools
list_workspaces
: List all Amazon Managed Prometheus workspacesget_workspace
: Get detailed information about a specific workspacequery_metrics
: Execute PromQL queries against a workspaceget_workspace_status
: Get the current status of a workspace
Configuration
Environment Variables
# AWS Configuration
export AWS_REGION=us-east-1
export AWS_ACCESS_KEY_ID=your_access_key
export AWS_SECRET_ACCESS_KEY=your_secret_key
# Optional: Enable debug logging
export LOG_LEVEL=DEBUG
MCP Client Configuration
Example configuration for MCP clients:
{
"mcpServers": {
"prometheus": {
"command": "uv",
"args": [
"run",
"--directory",
"/path/to/prometheus-mcp-server",
"prometheus-mcp-server"
],
"env": {
"AWS_REGION": "us-east-1"
}
}
}
}
Development with uv
Adding Dependencies
# Add runtime dependency
uv add boto3
# Add development dependency
uv add --dev pytest
# Add optional dependency
uv add --optional test pytest-mock
Managing Python Versions
# Use specific Python version
uv python install 3.11
uv sync --python 3.11
# List available Python versions
uv python list
Virtual Environment Management
# Create virtual environment
uv venv
# Activate virtual environment
source .venv/bin/activate
# Deactivate
deactivate
# Remove virtual environment
rm -rf .venv
Project Structure
prometheus-mcp-server/
├── src/prometheus_mcp_server/
│ ├── __init__.py # Package initialization
│ ├── main.py # Main MCP server with FastMCP tools
│ ├── auth.py # AWS SigV4 authentication utilities
│ ├── client.py # Enhanced client with authentication
│ └── simple_server.py # Simple test server
├── tests/
│ ├── test_prometheus_server.py # Original unit tests
│ └── test_simple_server.py # Simple server tests
├── examples/
│ ├── example_usage.py # Usage examples
│ └── mcp_config.json # MCP client configuration
├── pyproject.toml # Project configuration with uv support
├── .python-version # Python version specification
├── README.md # This file
├── test_demo.py # Comprehensive test demonstration
└── TEST_RESULTS.md # Test results documentation
Performance Benefits with uv
- Fast Installation: Up to 10-100x faster than pip
- Reliable Resolution: Better dependency resolution
- Disk Efficient: Shared package cache
- Reproducible Builds: Lock file ensures consistency
- Cross-Platform: Works on Windows, macOS, and Linux
Troubleshooting
Common Issues
-
FastMCP not found:
# Install FastMCP from GitHub uv add git+https://github.com/jlowin/fastmcp.git
-
AWS Credentials Error:
# Configure AWS credentials aws configure # or set environment variables export AWS_ACCESS_KEY_ID=your_key export AWS_SECRET_ACCESS_KEY=your_secret
-
Permission Denied:
- Ensure IAM user/role has required AMP permissions
- Check AWS region configuration
Debug Mode
# Enable verbose logging
LOG_LEVEL=DEBUG uv run prometheus-mcp-server
# Run with AWS debug
AWS_DEBUG=1 uv run prometheus-mcp-server
Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature-name
- Install development dependencies:
uv sync --extra dev
- Make your changes
- Run tests:
uv run pytest
- Run quality checks:
uv run black src/ && uv run ruff check src/
- Commit your changes:
git commit -am 'Add feature'
- Push to the branch:
git push origin feature-name
- Create a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Changelog
v0.1.0
- Initial release
- Basic workspace listing and querying
- AWS authentication support
- Multi-region support
- uv package management integration
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.