Airtable OAuth MCP Server

Airtable OAuth MCP Server

A production-ready Model Context Protocol server that enables AI assistants and applications to interact with Airtable bases through a standardized interface with secure OAuth 2.0 authentication.

Category
Visit Server

README

Airtable OAuth MCP Server

Python License Code style: ruff

A production-ready Model Context Protocol (MCP) server for Airtable with secure OAuth 2.0 authentication. This server enables AI assistants and applications to interact with Airtable bases through a standardized MCP interface, providing complete API coverage for all Airtable operations.

🚀 Features

Core Functionality

  • 🔐 OAuth 2.0 Authentication - Secure token-based authentication with Airtable
  • 📊 Complete Airtable API Coverage - 10 comprehensive MCP tools covering all operations
  • ⚡ FastMCP Framework - Built on the high-performance FastMCP framework
  • ☁️ Cloud-Ready - Production-ready deployment support
  • 🔄 Dual Transport - Support for both STDIO and HTTP transport protocols

Security & Reliability

  • 🔑 Environment-based Configuration - Secure credential management
  • ✅ Type Safety - Full type hints and validation with Pydantic
  • 🧪 Comprehensive Testing - Unit tests with pytest and coverage reporting
  • 📝 Code Quality - Linting with Ruff and type checking with MyPy

Developer Experience

  • 📚 Rich Documentation - Comprehensive setup and usage guides
  • 🔧 Easy Setup - Simple installation with uv package manager
  • 🎯 Typed Parameters - Clear, typed tool parameters for better IDE support
  • 🔍 Flexible Querying - Advanced filtering, sorting, and search capabilities

📋 Prerequisites

  • Python 3.11+ - Latest Python version for optimal performance
  • uv - Fast Python package manager (install guide)
  • Airtable Developer Account - To create OAuth applications (sign up)

🚀 Quick Start

1. Installation

Clone the repository and install dependencies:

git clone https://github.com/onimsha/airtable-mcp-server-oauth.git
cd airtable-mcp-server-oauth
uv sync

2. Airtable OAuth Setup

  1. Create an Airtable OAuth Application:
    • Visit Airtable Developer Hub
    • Create a new OAuth integration
    • Note your Client ID and Client Secret
    • Set redirect URI to http://localhost:8000/oauth/callback

3. Environment Configuration

Copy the environment template and configure your credentials:

cp .env.example .env

Edit .env with your values:

# Airtable OAuth Configuration
AIRTABLE_CLIENT_ID="your_airtable_client_id_here"
AIRTABLE_CLIENT_SECRET="your_airtable_client_secret_here"
AIRTABLE_REDIRECT_URI="http://localhost:8000/oauth/callback"

# Server Configuration
HOST="0.0.0.0"
PORT=8000
LOG_LEVEL="INFO"

4. Testing with MCP Inspector

Use the official MCP Inspector to test and interact with your server:

  1. Start the server:

    uv run python -m airtable_mcp http
    
  2. Open MCP Inspector: Visit https://modelcontextprotocol.io/docs/tools/inspector

  3. Connect to your server:

    • Select "HTTP Streaming" transport
    • Enter the URL: http://localhost:8000/mcp
    • Click "Connect"
  4. Authenticate with Airtable:

    • The server will guide you through OAuth authentication
    • Use the inspector to test available MCP tools

5. Run the Server

STDIO Transport (default):

uv run python -m airtable_mcp
# or
uv run airtable-oauth-mcp

HTTP Transport:

uv run python -m airtable_mcp http
# or with custom host/port
uv run python -m airtable_mcp http localhost 8001

Additional Options:

# Set log level
uv run python -m airtable_mcp --log-level DEBUG

# Show help
uv run python -m airtable_mcp --help

# Show version
uv run python -m airtable_mcp --version

The HTTP server will be available at http://localhost:8000/ (or custom host:port) with OAuth endpoints for web integration.

MCP Tools Available

The server provides 10 MCP tools for Airtable operations:

Base Operations:

  • list_bases() - List all accessible bases
  • list_tables(base_id, detail_level?) - List tables in a base
  • describe_table(base_id, table_id) - Get detailed table schema

Record Operations:

  • list_records(base_id, table_id, view?, filter_by_formula?, sort?, fields?) - List records with filtering
  • get_record(base_id, table_id, record_id) - Get a specific record
  • create_record(base_id, table_id, fields, typecast?) - Create a single record
  • create_records(base_id, table_id, records, typecast?) - Create multiple records
  • update_records(base_id, table_id, records, typecast?) - Update multiple records
  • delete_records(base_id, table_id, record_ids) - Delete multiple records
  • search_records(base_id, table_id, filter_by_formula, view?, fields?) - Search records with formulas

All tools now use typed parameters instead of generic args, making them more transparent to MCP clients.

Parameter Flexibility:

  • fields parameter accepts either a single field name (string) or array of field names
  • sort parameter expects array of objects: [{"field": "Name", "direction": "asc"}]

💡 Usage Examples

Basic Record Operations

# List all records in a table
records = await client.call_tool("list_records", {
    "base_id": "appXXXXXXXXXXXXXX",
    "table_id": "tblYYYYYYYYYYYYYY"
})

# Create a new record
new_record = await client.call_tool("create_record", {
    "base_id": "appXXXXXXXXXXXXXX",
    "table_id": "tblYYYYYYYYYYYYYY",
    "fields": {
        "Name": "John Doe",
        "Email": "john@example.com",
        "Status": "Active"
    }
})

# Search records with filtering
filtered_records = await client.call_tool("search_records", {
    "base_id": "appXXXXXXXXXXXXXX",
    "table_id": "tblYYYYYYYYYYYYYY",
    "filter_by_formula": "AND({Status} = 'Active', {Email} != '')",
    "fields": ["Name", "Email", "Status"]
})

Advanced Querying

# List records with sorting and filtering
records = await client.call_tool("list_records", {
    "base_id": "appXXXXXXXXXXXXXX",
    "table_id": "tblYYYYYYYYYYYYYY",
    "view": "Grid view",
    "filter_by_formula": "{Priority} = 'High'",
    "sort": [
        {"field": "Created", "direction": "desc"},
        {"field": "Name", "direction": "asc"}
    ],
    "fields": ["Name", "Priority", "Created", "Status"]
})

# Batch operations
batch_create = await client.call_tool("create_records", {
    "base_id": "appXXXXXXXXXXXXXX",
    "table_id": "tblYYYYYYYYYYYYYY",
    "records": [
        {"fields": {"Name": "Record 1", "Value": 100}},
        {"fields": {"Name": "Record 2", "Value": 200}},
        {"fields": {"Name": "Record 3", "Value": 300}}
    ],
    "typecast": True
})

Schema Discovery

# List all bases you have access to
bases = await client.call_tool("list_bases")

# Get detailed information about a specific table
table_info = await client.call_tool("describe_table", {
    "base_id": "appXXXXXXXXXXXXXX",
    "table_id": "tblYYYYYYYYYYYYYY"
})

# List all tables in a base
tables = await client.call_tool("list_tables", {
    "base_id": "appXXXXXXXXXXXXXX",
    "detail_level": "full"
})

🛠️ Development

Getting Started

  1. Fork and Clone:

    git clone https://github.com/onimsha/airtable-mcp-server-oauth.git
    cd airtable-mcp-server-oauth
    
  2. Setup Development Environment:

    uv sync --all-extras
    
  3. Run Tests:

    uv run pytest
    uv run pytest --cov=src/airtable_mcp --cov-report=html
    

Code Quality

Type Checking:

uv run mypy src/

Linting:

uv run ruff check src/
uv run ruff format src/

Pre-commit Hooks:

pip install pre-commit
pre-commit install

Testing

The project includes comprehensive test coverage:

  • Unit Tests: Test individual components and functions
  • Integration Tests: Test OAuth flow and Airtable API interactions
  • Coverage Reports: Ensure >90% code coverage
# Run all tests
uv run pytest

# Run with coverage
uv run pytest --cov=src/airtable_mcp

# Run specific test files
uv run pytest tests/test_oauth.py
uv run pytest tests/test_tools.py

Project Structure

src/
├── airtable_mcp/           # Main MCP server package
│   ├── __init__.py         # Package initialization
│   ├── __main__.py         # Module entry point
│   ├── main.py             # CLI and application entry
│   ├── api/                # Airtable API client
│   │   ├── __init__.py
│   │   ├── client.py       # HTTP client for Airtable API
│   │   ├── exceptions.py   # API-specific exceptions
│   │   └── models.py       # Pydantic models for API responses
│   └── mcp/                # MCP server implementation
│       ├── __init__.py
│       ├── schemas.py      # MCP tool schemas
│       └── server.py       # FastMCP server with tools
└── mcp_oauth_lib/          # Reusable OAuth library
    ├── __init__.py         # Library initialization
    ├── auth/               # Authentication components
    │   ├── __init__.py
    │   ├── context.py      # Auth context management
    │   ├── middleware.py   # OAuth middleware
    │   └── utils.py        # Auth utilities
    ├── core/               # Core OAuth functionality
    │   ├── __init__.py
    │   ├── config.py       # OAuth configuration
    │   ├── flow.py         # OAuth flow implementation
    │   └── server.py       # OAuth server endpoints
    ├── providers/          # OAuth provider implementations
    │   ├── __init__.py
    │   ├── airtable.py     # Airtable OAuth provider
    │   └── base.py         # Base provider interface
    └── utils/              # OAuth utilities
        ├── __init__.py
        ├── pkce.py         # PKCE implementation
        └── state.py        # State management

⚙️ Configuration

All configuration is handled through environment variables (loaded from .env):

Required Variables

  • AIRTABLE_CLIENT_ID - OAuth client ID from Airtable
  • AIRTABLE_CLIENT_SECRET - OAuth client secret
  • AIRTABLE_REDIRECT_URI - OAuth callback URL

Optional Variables

  • HOST - Server host (default: 0.0.0.0)
  • PORT - Server port (default: 8000)
  • LOG_LEVEL - Logging level (default: INFO)
  • MCP_SERVER_NAME - Server name (optional)
  • MCP_SERVER_VERSION - Server version (optional)

🤝 Contributing

We welcome contributions! Please see our contribution guidelines:

  1. Fork the repository and create a feature branch
  2. Write tests for any new functionality
  3. Ensure code quality with our linting and formatting tools
  4. Update documentation for any API changes
  5. Submit a pull request with a clear description

Contribution Areas

  • 🐛 Bug fixes - Help us squash bugs
  • New features - Add new Airtable API endpoints
  • 📚 Documentation - Improve setup guides and examples
  • 🧪 Testing - Increase test coverage
  • 🚀 Performance - Optimize API calls and caching

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

📚 Documentation

Additional Resources

📞 Support

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured