AI Studio MCP Server

AI Studio MCP Server

A Model Context Protocol server that connects to Google AI Studio/Gemini API, enabling content generation with support for various file types, conversation history, and system prompts.

Category
Visit Server

README

AI Studio MCP Server

A Model Context Protocol (MCP) server that integrates with Google AI Studio / Gemini API, providing content generation capabilities with support for files, conversation history, and system prompts.

Installation and Usage

Prerequisites

  • Node.js 20.0.0 or higher
  • Google AI Studio API key

Using npx (Recommended)

GEMINI_API_KEY=your_api_key npx -y aistudio-mcp-server

Local Installation

npm install -g aistudio-mcp-server
GEMINI_API_KEY=your_api_key aistudio-mcp-server

Configuration

Set your Google AI Studio API key as an environment variable:

export GEMINI_API_KEY=your_api_key_here

Optional Configuration

  • GEMINI_MODEL: Gemini model to use (default: gemini-2.5-flash)
  • GEMINI_TIMEOUT: Request timeout in milliseconds (default: 300000 = 5 minutes)
  • GEMINI_MAX_OUTPUT_TOKENS: Maximum output tokens (default: 8192)
  • GEMINI_MAX_FILES: Maximum number of files per request (default: 10)
  • GEMINI_MAX_TOTAL_FILE_SIZE: Maximum total file size in MB (default: 50)
  • GEMINI_TEMPERATURE: Temperature for generation (0-2, default: 0.2)

Example:

export GEMINI_API_KEY=your_api_key_here
export GEMINI_MODEL=gemini-2.5-flash
export GEMINI_TIMEOUT=600000  # 10 minutes
export GEMINI_MAX_OUTPUT_TOKENS=16384  # More output tokens
export GEMINI_MAX_FILES=5  # Limit to 5 files per request
export GEMINI_MAX_TOTAL_FILE_SIZE=100  # 100MB limit
export GEMINI_TEMPERATURE=0.7  # More creative responses

Available Tools

generate_content

Generates content using Gemini with comprehensive support for files, conversation history, and system prompts. Supports various file types including images, PDFs, Office documents, and text files.

Parameters:

  • user_prompt (string, required): User prompt for generation
  • system_prompt (string, optional): System prompt to guide AI behavior
  • files (array, optional): Array of files to include in generation
    • Each file object must have either path or content
    • path (string): Path to file
    • content (string): Base64 encoded file content
    • type (string, optional): MIME type (auto-detected from file extension)
  • model (string, optional): Gemini model to use (default: gemini-2.5-flash)
  • temperature (number, optional): Temperature for generation (0-2, default: 0.2). Lower values produce more focused responses, higher values more creative ones

Supported file types (Gemini 2.5 models):

  • Images: JPG, JPEG, PNG, GIF, WebP, SVG, BMP, TIFF
  • Video: MP4, AVI, MOV, WEBM, FLV, MPG, WMV (up to 10 files per request)
  • Audio: MP3, WAV, AIFF, AAC, OGG, FLAC (up to 15MB per file)
  • Documents: PDF (treated as images, one page = one image)
  • Text: TXT, MD, JSON, XML, CSV, HTML

File limitations:

  • Maximum file size: 15MB per audio/video/document file
  • Maximum total request size: 20MB (2GB when using Cloud Storage)
  • Video files: Up to 10 per request
  • PDF files follow image pricing (one page = one image)

Basic example:

{
  "user_prompt": "Analyze this image and describe what you see",
  "files": [
    {
      "path": "/path/to/image.jpg"
    }
  ]
}

PDF to Markdown conversion:

{
  "user_prompt": "Convert this PDF to well-formatted Markdown, preserving structure and formatting. Return only the Markdown content.",
  "files": [
    {
      "path": "/path/to/document.pdf"
    }
  ]
}

With system prompt:

{
  "system_prompt": "You are a helpful document analyst specialized in technical documentation",
  "user_prompt": "Please provide a detailed explanation of the authentication methods shown in this document",
  "files": [
    {"path": "/api-docs.pdf"}
  ]
}

Multiple files example:

{
  "user_prompt": "Compare these documents and images",
  "files": [
    {"path": "/document.pdf"},
    {"path": "/chart.png"},
    {"content": "base64encodedcontent", "type": "image/jpeg"}
  ]
}

Common Use Cases

PDF to Markdown Conversion

To convert PDF files to Markdown format, use the generate_content tool with an appropriate prompt:

{
  "user_prompt": "Convert this PDF to well-formatted Markdown, preserving structure, headings, lists, and formatting. Include table of contents if the document has sections.",
  "files": [
    {
      "path": "/path/to/document.pdf"
    }
  ]
}

Image Analysis

Analyze images, charts, diagrams, or photos with detailed descriptions:

{
  "system_prompt": "You are an expert image analyst. Provide detailed, accurate descriptions of visual content.",
  "user_prompt": "Analyze this image and describe what you see. Include details about objects, people, text, colors, and composition.",
  "files": [
    {
      "path": "/path/to/image.jpg"
    }
  ]
}

For screenshots or technical diagrams:

{
  "user_prompt": "Describe this system architecture diagram. Explain the components and their relationships.",
  "files": [
    {
      "path": "/architecture-diagram.png"
    }
  ]
}

Audio Transcription

Generate transcripts from audio files:

{
  "system_prompt": "You are a professional transcription service. Provide accurate, well-formatted transcripts.",
  "user_prompt": "Please transcribe this audio file. Include speaker identification if multiple speakers are present, and format it with proper punctuation and paragraphs.",
  "files": [
    {
      "path": "/meeting-recording.mp3"
    }
  ]
}

For interview or meeting transcripts:

{
  "user_prompt": "Transcribe this interview and provide a summary of key points discussed.",
  "files": [
    {
      "path": "/interview.wav"
    }
  ]
}

MCP Client Configuration

Add this server to your MCP client configuration:

{
  "mcpServers": {
    "aistudio": {
      "command": "npx",
      "args": ["-y", "aistudio-mcp-server"],
      "env": {
        "GEMINI_API_KEY": "your_api_key_here",
        "GEMINI_MODEL": "gemini-2.5-flash",
        "GEMINI_TIMEOUT": "600000",
        "GEMINI_MAX_OUTPUT_TOKENS": "16384",
        "GEMINI_MAX_FILES": "10",
        "GEMINI_MAX_TOTAL_FILE_SIZE": "50",
        "GEMINI_TEMPERATURE": "0.2"
      }
    }
  }
}

Development

Setup

Make sure you have Node.js 20.0.0 or higher installed.

npm install
npm run build

Running locally

GEMINI_API_KEY=your_api_key npm run dev

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured