AI Interaction Tool

AI Interaction Tool

An MCP server that provides an interactive PyQt5 UI for enhanced model communication, featuring multi-image management, file attachments, and customizable cognitive performance modes. It enables users to input complex content and manage workspace assets through a structured, tag-based output format.

Category
Visit Server

README

AI Interaction Tool - MCP Server

Modern AI interaction tool with advanced UI and powerful features for Model Context Protocol (MCP)

šŸš€ Core Features

šŸŽÆ Main Capabilities

  • Interactive UI Popup for content input and conversation control
  • File/Folder Attachment from workspace with validation and preview
  • šŸ–¼ļø Image Attachment System with drag & drop, multi-image support
  • Multi-language Support (English/Vietnamese)
  • Maximum Cognitive Power activation for peak AI performance
  • Tag-based Output Format integrated with system prompt rules
  • Workspace-aware Path Processing for cross-project compatibility

šŸ”§ New in v2.2.0 (Latest)

  • šŸ–¼ļø Image Attachment Support with drag & drop functionality
  • šŸ›”ļø Security Enhanced - secure path storage in user_images directory
  • šŸ’¾ Persistent Image State - checkbox state saves correctly
  • šŸŽÆ Multi-image Management - attach, preview, and remove multiple images
  • šŸ”„ Database Auto-cleanup - automatic image cleanup when disabled

šŸ”§ Previous v2.1.0

  • Enhanced UI/UX with modern PyQt5 interface
  • Structured Tag-based Output for perfect AI agent integration
  • Debounce Configuration with smart auto-save mechanisms
  • Cursor IDE Integration with comprehensive setup guide

šŸ“‹ Installation & Setup Guide

šŸ“„ Step 1: Clone Repository

git clone https://github.com/your-username/AI-interaction.git
cd AI-interaction

šŸ Step 2: Install Python

  • Requirement: Python 3.8+
  • Download from python.org
  • Or use package manager:
    # Windows with Chocolatey
    choco install python
    
    # macOS with Homebrew
    brew install python
    
    # Ubuntu/Debian
    sudo apt update && sudo apt install python3 python3-pip
    

šŸ“¦ Step 3: Install Dependencies

# Using pip
pip install -r requirements.txt

# Or using uv (recommended for performance)
pip install uv
uv pip install -r requirements.txt

āš™ļø Step 4: Configure MCP Server in Claude Desktop

Add the following configuration to Claude Desktop config file:

Config file paths:

  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Linux: ~/.config/claude/claude_desktop_config.json

Configuration content:

{
  "mcpServers": {
    "AI_interaction": {
      "command": "python",
      "args": ["E:/MCP-servers-github/AI-interaction/mcp_server.py"],
      "stdio": true,
      "enabled": true
    }
  }
}

āš ļø Important: Replace E:/MCP-servers-github/AI-interaction/mcp_server.py with the absolute path to mcp_server.py on your system.

🧠 Step 5: Configure AI Agent Rules (REQUIRED)

For proper AI agent operation with ai_interaction tool, you MUST setup custom instructions:

šŸ“‹ How to Add Custom Instructions:

  1. Open Claude Desktop or access Claude web interface
  2. Find "Custom Instructions" or "Add custom instructions" in settings
  3. Copy entire content from one of the rule files:
    • šŸ‡»šŸ‡³ Vietnamese: rule_for_ai_VI.txt
    • šŸ‡ŗšŸ‡ø English: rule_for_ai_EN.txt
  4. Paste into custom instructions field and save

šŸŽÆ Why This is Necessary:

  • āœ… Behavioral Framework: Rules define how AI agent processes ai_interaction output
  • āœ… Thinking Protocols: Activates high-level thinking patterns for quality responses
  • āœ… Ultra-Enhancement Modes: 10 cognitive modes for maximum performance
  • āœ… Tag Processing: Reads and processes control tags like <AI_INTERACTION_CONTINUE_CHAT>
  • āœ… Continue Logic: Auto-recall ai_interaction when continue_chat=true

šŸ“ Rule Files Location:

AI-interaction/
ā”œā”€ā”€ rule_for_ai_VI.txt    # Vietnamese rules 
ā”œā”€ā”€ rule_for_ai_EN.txt    # English rules
└── ...

⚔ Quick Setup Commands:

# View Vietnamese rules content
cat rule_for_ai_VI.txt

# View English rules content  
cat rule_for_ai_EN.txt

# Copy to clipboard (Windows)
type rule_for_ai_VI.txt | clip

# Copy to clipboard (macOS)
cat rule_for_ai_VI.txt | pbcopy

# Copy to clipboard (Linux)
cat rule_for_ai_VI.txt | xclip -selection clipboard

šŸš€ Step 6: Configure Cursor IDE (Recommended)

Cursor is the recommended IDE for AI development with this tool:

šŸ“‹ Cursor Setup Steps:

  1. Download Cursor: https://cursor.sh/
  2. Install and open workspace: Open AI-interaction folder
  3. Configure MCP in Cursor:
    • Open Command Palette (Cmd/Ctrl + Shift + P)
    • Search "Configure MCP Servers"
    • Add AI_interaction server config
  4. Setup custom instructions:
    • Copy content from rule_for_ai_VI.txt or rule_for_ai_EN.txt
    • Paste into "Custom Instructions" field in custom mode Agent: image image image

šŸŽÆ Cursor Advantages:

  • āœ… Native MCP Support: Built-in integration with MCP servers
  • āœ… AI-First IDE: Optimized for AI development workflows
  • āœ… Real-time Suggestions: Context-aware code completion
  • āœ… Advanced Debugging: Enhanced debugging for MCP tools
  • āœ… Performance: Faster than traditional IDEs for AI projects

šŸš€ Step 7: Launch and Test

!!! -----> In your terminal: python E:\MCP-servers-github\AI-interaction\main.py --ui

āš ļø Important: Replace E:/MCP-servers-github/AI-interaction/mcp_server.py with the absolute path to mcp_server.py on your system. ---> AUTO SHOW UI: <img width="1164" height="930" alt="image" src="https://github.com/user-attachments/assets/b2b633d1-bc62-4c66-ad21-1c2b8eb71eb5" />

  1. Restart Claude Desktop/Cursor after configuring MCP server
  2. Test connection by calling ai_interaction tool
  3. Test UI popup to verify functionality
  4. Validate rule integration through AI agent responses

šŸ“¦ Package Structure

AI-interaction/
ā”œā”€ā”€ ai_interaction_tool/       # Main interaction tool package
│   ā”œā”€ā”€ core/                 # Core dialog and configuration
│   │   ā”œā”€ā”€ dialog.py         # InputDialog with PyQt5 UI
│   │   └── config.py         # Configuration management
│   ā”œā”€ā”€ ui/                   # Interface and styling
│   │   ā”œā”€ā”€ file_dialog.py    # File attachment dialogs
│   │   ā”œā”€ā”€ file_tree.py      # File system tree view
│   │   ā”œā”€ā”€ image_attachment.py # šŸ–¼ļø Image attachment with drag & drop
│   │   └── styles.py         # Modern UI styling
│   ā”œā”€ā”€ utils/                # Utilities and multi-language
│   │   ā”œā”€ā”€ translations.py   # Multi-language support
│   │   └── file_utils.py     # File operation utilities
│   ā”œā”€ā”€ engine.py             # Main entry point
│   ā”œā”€ā”€ description.py        # Detailed tool description
│   └── __init__.py           # Package exports
ā”œā”€ā”€ user_images/              # šŸ›”ļø Secure image storage directory
ā”œā”€ā”€ main.py                   # Legacy entry point
ā”œā”€ā”€ mcp_server.py             # MCP server implementation
ā”œā”€ā”€ requirements.txt          # Python dependencies
ā”œā”€ā”€ pyproject.toml           # Project configuration
└── README.md                # This file

šŸŽ® Usage Guide

Available Tools in MCP Server

1. ai_interaction: Main Interactive Tool

  • Function: Creates UI popup for user input with file/image attachment
  • Output: Structured tag-based format with image support
  • Integration: Perfect integration with system prompt rules
  • Use cases:
    • Input complex content with formatting
    • Attach files/folders from workspace
    • šŸ–¼ļø Attach images with drag & drop functionality
    • šŸ“· Multi-image support with preview and management
    • Control AI thinking modes and reasoning levels

Basic Usage Examples

# Programmatic usage
from ai_interaction_tool import ai_interaction

# Launch interactive interface
result = ai_interaction()
print(result)  # Structured output with tags

šŸ–¼ļø Image Attachment Features

šŸ“· Core Image Capabilities

  • Drag & Drop Support: Drag images directly into the UI
  • Multi-image Management: Attach, preview, and remove multiple images
  • Format Support: PNG, JPG, JPEG, GIF, BMP, WEBP
  • Secure Storage: Images stored safely in user_images/ directory
  • Base64 Encoding: Automatic conversion for AI processing
  • Preview System: Click images to view larger versions
  • Persistent State: Save images option with checkbox persistence

šŸŽÆ How to Use Image Attachment

  1. Attach Button: Click "šŸ“· Attach Images" to select files
  2. Drag & Drop: Drag images from file explorer directly to UI
  3. Paste Support: Paste images from clipboard (Ctrl+V)
  4. Multiple Images: Attach as many images as needed
  5. Remove Images: Click X button on individual image previews
  6. Clear All: Use "šŸ—‘ļø Clear Images" to remove all at once
  7. Save Toggle: Check/uncheck "Save images" to control persistence

šŸ›”ļø Security & Privacy

  • Local Only: All images stored locally in user_images/
  • No External Access: No uploads or external connections
  • Relative Paths: Only relative paths stored in config for security
  • User Control: Users control what images to attach and save
  • Auto-cleanup: Images automatically cleaned when save disabled

Output Format

AI Interaction Tool uses clean tag-based format:

User message content with natural line breaks

<AI_INTERACTION_ATTACHED_FILES>
FOLDERS:
- workspace_name/relative/path/to/folder

FILES:
- workspace_name/relative/path/to/file.js
</AI_INTERACTION_ATTACHED_FILES>

<AI_INTERACTION_WORKSPACE>workspace_name</AI_INTERACTION_WORKSPACE>
<AI_INTERACTION_CONTINUE_CHAT>true/false</AI_INTERACTION_CONTINUE_CHAT>

Note: When images are attached, they are automatically converted to base64 format and included in the response for AI processing.

šŸ”§ Troubleshooting

Common Issues

  1. "Command not found" error

    • Check Python is installed and in PATH
    • Verify absolute path in MCP config
  2. "Module not found" error

    • Run pip install -r requirements.txt
    • Check virtual environment if using one
  3. UI not displaying

    • Ensure PyQt5 is installed correctly
    • Check display settings and desktop environment
  4. File attachment not working

    • Verify file permissions and access rights
    • Check workspace path configuration
  5. šŸ–¼ļø Image attachment issues

    • Ensure PyQt5 is properly installed for image processing
    • Check user_images/ directory permissions
    • Verify image formats: PNG, JPG, JPEG, GIF, BMP, WEBP supported
    • Clear config if images not loading: Remove last_attached_images from config.json
  6. MCP Connection Issues in Cursor

    • Verify MCP server configuration in Cursor settings
    • Check process running with ps aux | grep mcp_server
    • Restart Cursor after config changes

Debug Mode

To debug issues, run server directly:

python mcp_server.py

For Cursor debugging:

# Check MCP server logs in Cursor
# Open Developer Tools → Console
# Look for MCP connection messages

šŸ”„ Version History

  • v2.2.0 (Latest): šŸ–¼ļø Image Attachment System - Complete image support with drag & drop, multi-image management, security enhancements, and persistent state
  • v2.1.0: Enhanced UI/UX, Cursor IDE integration, Debounce config system
  • v2.0.0: Refactored architecture with modern PyQt5 UI
  • v1.x: Core functionality and basic features

šŸŽÆ v2.2.0 Detailed Changes:

  • āœ… Image Attachment UI: Full drag & drop interface with preview system
  • āœ… Multi-format Support: PNG, JPG, JPEG, GIF, BMP, WEBP compatibility
  • āœ… Security Hardening: Secure path storage, local-only processing
  • āœ… Database Management: Auto-cleanup, persistent storage, state management
  • āœ… UX Improvements: Click-to-enlarge, remove buttons, checkbox persistence
  • āœ… Performance: Optimized image loading with base64 conversion
  • āœ… Bug Fixes: Checkbox state persistence, config loading issues resolved

šŸŽÆ Integration Workflow & System Architecture

šŸ”„ Complete Integration Flow:

[User Input] → [ai_interaction Tool] → [Tag-based Output] → [AI Agent Rules] → [Enhanced Response]
     ↑                                                                              ↓
     └─────────────── [Auto-recall if continue_chat=true] ā†ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜

🧠 Cognitive Enhancement System:

  • Standard Mode: High-level thinking with 1+ thinking blocks
  • Ultra-Enhancement Mode: 10 breakthrough cognitive modes simultaneously
    • Quantum Cognitive Mode
    • Meta-Cognitive Orchestration
    • Expert Persona Simulation
    • Time-Dilated Processing
    • Systems-Level Integration
    • Psychological Priming Mode
    • Maximum Cognitive Resource Allocation
    • Adversarial Self-Testing Mode
    • Obsessive Quality Standards
    • Breakthrough Innovation Mode

šŸ“Š Output Tag System:

<AI_INTERACTION_CONTINUE_CHAT>true/false</AI_INTERACTION_CONTINUE_CHAT>
<AI_INTERACTION_ATTACHED_FILES>
FOLDERS:
- workspace_name/relative/path/folder
FILES:  
- workspace_name/relative/path/file.ext
</AI_INTERACTION_ATTACHED_FILES>
<AI_INTERACTION_WORKSPACE>workspace_name</AI_INTERACTION_WORKSPACE>

šŸ’” Advanced Features & Best Practices

šŸŽØ UI/UX Enhancements:

  • Responsive Design: Adaptive sizing with minimum 800x700 resolution
  • Multi-language Support: Seamless EN/VI switching with persistent config
  • Modern PyQt5 Styling: Semantic color system with button properties
  • File Drag-Drop: Intuitive file attachment with validation
  • Context Menu: Right-click operations for file management
  • Debounce Saving: Smart config persistence with QTimer optimization

šŸ”§ Technical Specifications:

  • Python: 3.8+ required with PyQt5 dependencies
  • Memory: Minimum 512MB RAM for UI components
  • Storage: ~50MB for tool installation and config
  • Platform: Cross-platform (Windows/macOS/Linux) with native styling
  • Performance: Event-driven architecture with minimal CPU usage

šŸ“ˆ Performance Optimization:

  • Lazy Loading: Components load only when needed
  • Efficient Config: JSON-based with automatic compression
  • Resource Management: Proper cleanup and memory management
  • Caching Strategy: Workspace state persistence for faster startup

šŸ›”ļø Security & Privacy

šŸ”’ Security Features:

  • Local Processing: All file operations are local only, no uploads
  • Path Validation: Robust security checks for file access
  • Sandboxed Execution: Tool runs in controlled environment
  • No Data Collection: Zero telemetry or external data transmission

šŸ” Privacy Protection:

  • Config Encryption: Local config with secure storage options
  • File Access Control: User-controlled file attachment permissions
  • Workspace Isolation: Project boundaries are enforced
  • Audit Trail: Optional logging for security monitoring

🌟 System Requirements & Compatibility

šŸ’» Minimum System Requirements:

OS: Windows 10+ / macOS 10.14+ / Ubuntu 18.04+
Python: 3.8 or higher
RAM: 512MB available
Storage: 100MB free space
Display: 1024x768 minimum resolution

šŸŽÆ Recommended Setup:

OS: Windows 11 / macOS 12+ / Ubuntu 20.04+
Python: 3.10+ with virtual environment
RAM: 2GB available  
Storage: 500MB free space
Display: 1920x1080 or higher
GPU: Optional for enhanced UI rendering

šŸ”§ Compatibility Matrix:

Component Version Status Notes
Python 3.8-3.11 āœ… Tested Recommended 3.10+
PyQt5 5.15+ āœ… Required Core UI framework
Claude Desktop Latest āœ… Optimized MCP integration
Cursor IDE Latest šŸš€ Recommended AI-first development
VS Code Any āœ… Compatible Alternative IDE option

šŸ¤ Contributing

Note: This is a private repository. Only the owner has push access.

For suggestions or issues:

  1. Create detailed issue reports
  2. Provide reproduction steps
  3. Include system information
  4. Attach relevant logs or screenshots

šŸ“š Documentation & Resources

šŸ“– Documentation Files:

  • rule_for_ai_VI.txt - Vietnamese agent behavior rules
  • rule_for_ai_EN.txt - English agent behavior rules
  • SYSTEM_PROMPT_Claude-4-sonnet-max.txt - Full system prompt example
  • pyproject.toml - Project configuration and dependencies

šŸ”— Useful Links:

šŸ’” Related Projects:

- https://github.com/KhaiHuynhVN/mcp-server-agent-comm

šŸ“„ License & Legal

šŸ“œ License:

MIT License

Copyright (c) 2025 DemonVN - AI Interaction Tool

āš–ļø Legal Notes:

  • Tool complies with local processing requirements
  • No personal data collection
  • Respects user privacy and data sovereignty
  • Compatible with enterprise security policies

šŸŽÆ Special Thanks:

  • Model Context Protocol team for standardized interface
  • Claude Desktop integration ecosystem
  • Cursor IDE team for AI-first development tools
  • Open source Python community
  • Beta testers and early adopters

šŸ”„ Inspiration:

Project inspired by the need for seamless AI interaction tools with modern UX principles and professional-grade architecture.


šŸš€ Happy Coding with AI Interaction Tool!

For support, issues, or feature requests, please open an issue on the GitHub repository.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured