AI Develop Assistant
Assists AI developers with intelligent requirement analysis and architecture design through guided clarification questions, branch-aware management, and automated architecture generation with persistent storage.
README
🚀 MCP AI开发助手
协助AI开发者进行智能化需求分析与架构设计的MCP工具
✨ 核心特性
- 智能需求澄清: 自动识别项目类型,生成针对性问题
- 分支感知管理: 跟踪项目目标、功能设计、技术偏好、UI设计等维度
- 架构自动生成: 基于完整需求生成技术架构方案
- 持久化存储: 自动保存分析结果,支持导出文档
📁 快速配置
旧版本配置
-
克隆代码
git clone https://github.com/jiemobasixiangcai/ai-develop-assistant.git -
推荐虚拟环境
python -m venv venv source venv/bin/activate # Unix/Linux/MacOS venv\Scripts\activate # Windows -
安装依赖
pip install -r requirements.txt -
配置文件位置
Windows: %APPDATA%\Claude\claude_desktop_config.json macOS: ~/Library/Application Support/Claude/claude_desktop_config.json -
添加配置
{ "mcpServers": { "ai-develop-assistant": { "command": "python", "args": ["path/to/AIDevlopStudy.py"], "env": { "MCP_STORAGE_DIR": "./mcp_data" } } } } -
重启Claude Desktop
新版本配置
🔧 核心工具
- start_new_project - 开始新项目
- create_requirement_blueprint - 创建需求蓝图
- requirement_clarifier - 获取需求澄清提示
- save_clarification_tasks - 保存澄清任务
- update_branch_status - 更新分支状态
- requirement_manager - 需求文档管理器
- check_architecture_prerequisites - 检查架构前置条件
- get_architecture_design_prompt - 获取架构设计提示
- save_generated_architecture - 保存生成的架构设计
- export_final_document - 导出完整文档
- view_requirements_status - 查看需求状态
配置(远程直连复制到你的工具中,将MCP_STORAGE_DIR替换为你的本地目录)
{
"mcpServers": {
"ai-develop-assistant": {
"command": "uvx",
"args": ["ai-develop-assistant@latest"],
"env": {
"MCP_STORAGE_DIR": "/path/to/your/storage"
}
}
}
}
🎯 使用流程
基本步骤
-
需求澄清
requirement_clarifier("我要做一个在线教育平台") -
需求管理
requirement_manager("目标用户:学生和教师", "项目概述") -
查看状态
view_requirements_status() -
架构设计
architecture_designer("在线教育平台架构") -
导出文档
export_final_document()
🚀 开始使用
快速上手
- 配置Claude Desktop (参考上面的配置方法)
- 重启Claude Desktop
- 开始智能需求分析:
requirement_clarifier("描述你的项目想法") - 跟随AI的智能引导,逐步完善各个需求分支
- 导出完整文档:
export_final_document()
最佳实践
- 💬 信任AI的分支管理:让AI引导你完成所有需求分支
- 🎯 明确表达偏好:对技术选型、UI风格等明确表达偏好
- 📊 定期查看状态:使用
view_requirements_status了解进度 - 🤖 适当授权AI:对不确定的部分可以说"用常规方案"
🎯 现在您拥有了一个真正智能的AI开发助手,它会记住每个细节,引导您完成完整的需求分析!
💬 交流群
<div align="center"> <img src="./assets/qr-code.jpg" width="200" alt="交流群"> <br> 交流群 </div>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.