
AI Book Agent MCP Server
Provides AI assistants with intelligent access to ML textbook content for creating accurate, source-grounded documentation using local models for privacy and cost efficiency.
README
AI Book Agent MCP Server
An MCP (Model Context Protocol) server that provides AI assistants with intelligent access to ML textbook content for creating accurate, source-grounded documentation. This pure Python implementation uses local models for complete privacy and cost efficiency.
Overview
This project transforms authoritative ML textbooks into a knowledge service that any MCP-compatible AI assistant can access. Using local LLMs (Qwen) and embeddings (sentence-transformers), it creates a private, cost-effective RAG system exposed via the official Python MCP SDK.
Why MCP?
Traditional Approach Limitations
- Knowledge locked in a single application
- Users must switch between tools
- Cannot leverage AI assistants they already use
- Difficult to integrate with existing workflows
MCP Server Benefits
- Universal Access: Works with Claude Desktop, VS Code, and any MCP client
- Workflow Integration: Use book knowledge directly in your IDE or chat
- Composability: Combine with other MCP servers (filesystem, GitHub, etc.)
- Future-Proof: As MCP ecosystem grows, your book agent automatically works with new tools
Architecture
┌─────────────────────┐ ┌─────────────────────┐
│ Claude Desktop │ │ VS Code │
│ "Explain ML drift │ │ "Generate docs │
│ from textbooks" │ │ for monitoring" │
└──────────┬──────────┘ └──────────┬──────────┘
│ │
└─────────────┬─────────────┘
│ MCP Protocol (stdio/HTTP)
▼
┌─────────────────────────────────────┐
│ Python MCP Server │
│ (Official modelcontextprotocol/ │
│ python-sdk) │
├─────────────────────────────────────┤
│ MCP Tools: │
│ - @mcp.tool() search_books() │
│ - @mcp.tool() get_chapter_content() │
│ - @mcp.tool() generate_section() │
│ - @mcp.tool() cite_sources() │
├─────────────────────────────────────┤
│ RAG Components (same process): │
│ - EPUB Parser (ebooklib) │
│ - Embeddings (sentence-transformers)│
│ - Vector Store (ChromaDB/FAISS) │
│ - LLM Generation (Ollama/Qwen) │
└─────────────────────────────────────┘
Technology Stack
- MCP Framework: Official Python SDK (
mcp[cli]
) - Language: Python 3.11+
- Embeddings: sentence-transformers (all-MiniLM-L6-v2)
- LLM: Ollama with Qwen 2.5 7B
- Vector Store: ChromaDB/FAISS
- Book Parsing: ebooklib, BeautifulSoup4
- Transport: stdio (local) or HTTP (remote)
Core Features as MCP Tools
1. searchBooks
Search across all indexed books for relevant content
{
name: "searchBooks",
description: "Search ML textbooks for specific topics or concepts",
inputSchema: {
query: string,
bookFilter?: string[],
maxResults?: number,
includeContext?: boolean
}
}
2. getChapterContent
Retrieve specific chapter or section content
{
name: "getChapterContent",
description: "Get full content of a specific book chapter",
inputSchema: {
bookId: string,
chapterId: string,
format?: "markdown" | "plain"
}
}
3. generateSection
Generate documentation based on book content
{
name: "generateSection",
description: "Generate documentation section grounded in textbook sources",
inputSchema: {
topic: string,
outline?: string[],
style?: "technical" | "tutorial" | "overview",
maxSources?: number
}
}
4. citeSources
Get proper citations for content
{
name: "citeSources",
description: "Generate proper citations for book content",
inputSchema: {
bookId: string,
pageNumbers?: number[],
format?: "APA" | "MLA" | "Chicago"
}
}
Resources
The server exposes book content as browsable resources:
/books
├── /designing-ml-systems
│ ├── metadata.json
│ ├── /chapters
│ │ ├── /1-introduction
│ │ ├── /2-ml-systems-design
│ │ └── ...
│ └── /topics
│ ├── /monitoring
│ ├── /deployment
│ └── ...
└── /other-ml-book
└── ...
Prompts
Pre-configured prompts for common tasks:
doc_generator
name: doc_generator
description: Generate technical documentation from book sources
arguments:
- name: topic
description: The topic to document
- name: audience
description: Target audience (beginner/intermediate/advanced)
- name: length
description: Desired length (brief/standard/comprehensive)
concept_explainer
name: concept_explainer
description: Explain ML concepts using textbook definitions
arguments:
- name: concept
description: The concept to explain
- name: include_examples
description: Whether to include practical examples
Use Cases
1. In Claude Desktop
User: "Explain model drift using the ML textbooks"
Claude: [Uses searchBooks tool to find drift content]
[Retrieves relevant chapters]
[Generates explanation with citations]
2. In VS Code
# User comment: "TODO: Add monitoring based on best practices"
# AI Assistant uses book agent to generate monitoring code
3. Documentation Pipeline
# Automated doc generation using MCP tools
mcp-client generate-docs \
--server ai-book-agent \
--topics "deployment,monitoring,testing" \
--output ml-best-practices.md
Getting Started
Prerequisites
- Linux system (Ubuntu 22.04+ recommended)
- Python 3.11+
- Node.js 18+
- 16GB RAM minimum
- 20GB free disk space
Installation
# Clone the repository
git clone <repository-url>
cd ai-book-agent
# Install Python dependencies (with MCP SDK)
pip install "mcp[cli]" sentence-transformers chromadb ollama ebooklib beautifulsoup4
# Or use requirements.txt
pip install -r requirements.txt
# Install Ollama for local LLM
curl -fsSL https://ollama.ai/install.sh | sh
# Pull required models
ollama pull qwen2.5:7b
# Index existing books
python scripts/index_books.py
Configuration
Configure the server:
# config.yaml
embeddings:
model: "all-MiniLM-L6-v2"
device: "cpu" # or "cuda"
generation:
provider: "ollama"
model: "qwen2.5:7b"
base_url: "http://localhost:11434"
books:
data_dir: "data/epub"
index_dir: "data/vector_db"
Add to Claude Desktop config:
{
"mcpServers": {
"ai-book-agent": {
"command": "python",
"args": ["/path/to/ai-book-agent/server.py"]
}
}
}
Basic Usage
Once configured, the tools are available in any MCP client:
You: What does the <author> say about feature engineering?
Assistant: I'll search the ML textbooks for information about feature engineering.
[Calling searchBooks with query="feature engineering"]
[Found 5 relevant sections in "<Book Title>"]
According to <author> in "<Book Title>":
Feature engineering is described as... [content with citations]
Development
Adding New Books
# Place EPUB in data directory
cp new-ml-book.epub data/epub/
# Re-index all books
python scripts/index_books.py
# Server will automatically pick up new content
Extending Tools
Add new tools directly in server.py
:
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("ai-book-agent")
@mcp.tool()
def compare_approaches(approach1: str, approach2: str) -> str:
"""Compare different ML approaches from multiple books"""
results1 = search_books(approach1, 3)
results2 = search_books(approach2, 3)
comparison = generate_comparison(results1, results2)
return comparison
@mcp.resource("book://{book_id}/summary")
def get_book_summary(book_id: str) -> str:
"""Get a summary of a specific book"""
return load_book_summary(book_id)
Testing
# Test MCP server locally
mcp dev server.py
# Test individual components
python scripts/test_components.py
python scripts/test_search.py
# Run full test suite
pytest tests/
# Test with Claude Desktop
mcp install server.py
Project Structure
ai-book-agent/
├── server.py # Main MCP server (entry point)
├── src/ # Python modules
│ ├── parsers/ # EPUB parsing
│ ├── embeddings/ # Embedding generation
│ ├── search/ # Vector search & retrieval
│ ├── generation/ # LLM integration (Ollama)
│ └── utils/ # Configuration and helpers
├── scripts/ # Utility scripts
│ ├── index_books.py # Index EPUB files
│ ├── test_*.py # Test individual components
│ └── setup.py # Initial setup
├── data/
│ ├── epub/ # Source EPUB files
│ ├── processed/ # Processed book content
│ └── vector_db/ # Vector store data
├── tests/ # Test suites
├── config.yaml # Configuration
├── requirements.txt # Python dependencies
└── README.md
Pure Python Architecture
This project uses a simplified, single-language approach:
- Python MCP Server: Official SDK handles MCP protocol and tool exposure
- Integrated RAG: All ML components run in the same Python process
- Local Models: Complete privacy with Ollama and sentence-transformers
Benefits of this approach:
- Simpler deployment: Single Python service
- Direct ML access: No API overhead between MCP and RAG
- Easier debugging: One codebase, one process
- Better performance: No network calls between components
Remote Access
For accessing the server from anywhere:
# Option 1: Cloudflare Tunnel (recommended)
cloudflared tunnel create book-agent
cloudflared tunnel run --url http://localhost:8080 book-agent
# Option 2: Configure with your domain
# See USER_GUIDE.md for detailed setup
Roadmap
- [x] Basic MCP server structure
- [x] EPUB parsing and indexing
- [x] Core search tools
- [ ] Advanced RAG features
- [ ] Multi-book cross-referencing
- [ ] PDF support
- [ ] Streaming responses for long content
- [ ] Caching layer for performance
- [ ] Book update notifications
Contributing
See USER_GUIDE.md for details on:
- Adding new tools
- Improving search algorithms
- Supporting new book formats
- Performance optimizations
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.