AGS API MCP Server
Enables AI assistants to interact with AccelByte Gaming Services APIs through semantic search, detailed API information retrieval, and authenticated API execution for game backend operations.
README
AGS API MCP Server
Description
The AGS API MCP Server is a Model Context Protocol (MCP) server that provides AI assistants with access to AccelByte Gaming Services APIs through OpenAPI integration.
What It Is
An MCP server built with TypeScript that bridges AI assistants (VS Code Copilot, Cursor, Claude) with AccelByte Gaming Services APIs. It implements the Model Context Protocol to expose AccelByte APIs as tools that AI assistants can discover and use.
What It's For
Enable AI assistants to interact with AccelByte APIs by:
- Searching for available AccelByte API operations
- Getting detailed information about specific APIs
- Executing API requests with proper authentication
- Retrieving token information
What It Does
- Exposes AccelByte APIs as MCP Tools: Provides access to AccelByte APIs through MCP tools
- Provides Semantic Search: Search across OpenAPI operations by description, tags, or path
- Executes API Requests: Runs API calls with proper authentication and validation
- Provides Token Information: Retrieves information about authenticated tokens
Prerequisites
- Docker installed and running
- AccelByte Environment URL (
AB_BASE_URL) - Your AccelByte environment base URL - (Optional) AccelByte OAuth Credentials - If using authentication features
Quick Start
Visual Studio Code
Create or edit .vscode/mcp.json in your workspace (or configure in user settings):
{
"servers": {
"ags-api": {
"type": "stdio",
"command": "docker",
"args": [
"run",
"--rm",
"--interactive",
"--env", "AB_BASE_URL=https://yourgame.accelbyte.io",
"--env", "OAUTH_CLIENT_ID=your-client-id",
"--env", "OAUTH_CLIENT_SECRET=your-client-secret",
"ghcr.io/accelbyte/ags-api-mcp-server:2025.9.0"
]
}
}
}
Note: Replace the placeholder values with your actual AccelByte credentials. You can also use input variables for sensitive data. See the VS Code MCP documentation for more details.
Location:
- Workspace:
.vscode/mcp.json - User settings: VS Code settings UI or
settings.json
Cursor
Create or edit .cursor/mcp.json in your workspace (or configure in user settings):
{
"mcpServers": {
"ags-api": {
"command": "docker",
"args": [
"run",
"--rm",
"--interactive",
"--env", "AB_BASE_URL=https://yourgame.accelbyte.io",
"--env", "OAUTH_CLIENT_ID=your-client-id",
"--env", "OAUTH_CLIENT_SECRET=your-client-secret",
"ghcr.io/accelbyte/ags-api-mcp-server:2025.9.0"
]
}
}
}
Note: Replace the placeholder values with your actual AccelByte credentials. See the Cursor MCP documentation for more details.
Location:
- Workspace:
.cursor/mcp.json - User settings: Cursor settings UI
Claude Desktop
Edit your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"ags-api": {
"command": "docker",
"args": [
"run",
"--rm",
"--interactive",
"--env", "AB_BASE_URL=https://yourgame.accelbyte.io",
"--env", "OAUTH_CLIENT_ID=your-client-id",
"--env", "OAUTH_CLIENT_SECRET=your-client-secret",
"ghcr.io/accelbyte/ags-api-mcp-server:2025.9.0"
]
}
}
}
Note: Replace the placeholder values with your actual AccelByte credentials. See the Claude Desktop MCP documentation for more details.
After configuration: Restart your AI assistant application to load the MCP server.
Claude Code
Claude Code uses a different configuration system than Claude Desktop. You can configure MCP servers either via CLI command or by creating a .mcp.json file.
Option 1: Using CLI Command
Run the following command in your terminal:
claude mcp add --transport stdio ags-api -- \
docker run --rm --interactive \
--env AB_BASE_URL=https://yourgame.accelbyte.io \
--env OAUTH_CLIENT_ID=your-client-id \
--env OAUTH_CLIENT_SECRET=your-client-secret \
ghcr.io/accelbyte/ags-api-mcp-server:2025.9.0
Note: Replace the placeholder values with your actual AccelByte credentials. The -- separator is required to distinguish Claude CLI flags from the Docker command.
Option 2: Using .mcp.json File
Create or edit .mcp.json in your project root:
{
"mcpServers": {
"ags-api": {
"type": "stdio",
"command": "docker",
"args": [
"run",
"--rm",
"--interactive",
"--env", "AB_BASE_URL=https://yourgame.accelbyte.io",
"--env", "OAUTH_CLIENT_ID=your-client-id",
"--env", "OAUTH_CLIENT_SECRET=your-client-secret",
"ghcr.io/accelbyte/ags-api-mcp-server:2025.9.0"
]
}
}
}
Note: Replace the placeholder values with your actual AccelByte credentials. See the Claude Code MCP documentation for more details.
Location: .mcp.json in your project root directory
Antigravity
Antigravity uses mcp_config.json for MCP server configuration. Create or edit the configuration file:
Location: mcp_config.json in your project root
{
"mcpServers": {
"ags-api": {
"command": "docker",
"args": [
"run",
"--rm",
"--interactive",
"--env", "AB_BASE_URL=https://yourgame.accelbyte.io",
"--env", "OAUTH_CLIENT_ID=your-client-id",
"--env", "OAUTH_CLIENT_SECRET=your-client-secret",
"ghcr.io/accelbyte/ags-api-mcp-server:2025.9.0"
]
}
}
}
Note: Replace the placeholder values with your actual AccelByte credentials. See the Antigravity MCP documentation for more details.
Location: mcp_config.json in your project root directory
Gemini CLI
Gemini CLI uses a different configuration system. You can configure MCP servers either via CLI command or by editing settings.json.
Option 1: Using CLI Command
Run the following command in your terminal:
gemini mcp add --transport stdio --env AB_BASE_URL=https://yourgame.accelbyte.io --env OAUTH_CLIENT_ID=your-client-id --env OAUTH_CLIENT_SECRET=your-client-secret ags-api -- docker run --rm --interactive ghcr.io/accelbyte/ags-api-mcp-server:2025.9.0
Note: Replace the placeholder values with your actual AccelByte credentials. The -- separator is required to distinguish Gemini CLI flags from the Docker command. See the Gemini CLI MCP documentation for more details.
Option 2: Using settings.json File
Edit your Gemini CLI settings file:
User scope: ~/.gemini/settings.json
Project scope: .gemini/settings.json (in your project root)
{
"mcpServers": {
"ags-api": {
"command": "docker",
"args": [
"run",
"--rm",
"--interactive",
"--env", "AB_BASE_URL=https://yourgame.accelbyte.io",
"--env", "OAUTH_CLIENT_ID=your-client-id",
"--env", "OAUTH_CLIENT_SECRET=your-client-secret",
"ghcr.io/accelbyte/ags-api-mcp-server:2025.9.0"
]
}
}
}
Note: Replace the placeholder values with your actual AccelByte credentials. See the Gemini CLI MCP documentation for more details.
Location:
- User scope:
~/.gemini/settings.json - Project scope:
.gemini/settings.jsonin your project root
Using the Tools
Once configured, your AI assistant can use the following MCP tools to interact with AccelByte APIs:
get_token_info
Get information about the authenticated user and token (if available). Returns details such as:
- User ID and display name
- Namespace
- Roles and permissions
- Token expiration information
Example usage: Ask your AI assistant "What's my current user information?" or "Show me my token details".
search-apis
Search for AccelByte API operations by:
- Description or summary text
- HTTP method (GET, POST, PUT, DELETE, etc.)
- API tags
- Service name
Example usage: "Find APIs for user management" or "Search for inventory-related endpoints".
describe-apis
Get detailed information about a specific API operation, including:
- Request parameters and schemas
- Response schemas
- Authentication requirements
- Example requests
Example usage: "Show me details about the getUserProfile API" or "What parameters does the createItem endpoint need?".
run-apis
Execute API requests against AccelByte endpoints. The server handles:
- Authentication with your token
- Request validation
- Response formatting
Note: For write operations (POST, PUT, PATCH, DELETE), the server may request your consent before executing.
Example usage: "Get my user profile" or "List all items in my inventory".
Workflow Support
The server also provides workflow resources and prompts for running predefined workflows. Ask your AI assistant about available workflows or use the run-workflow prompt.
Bonus: Running Docker Container Manually
If you prefer to run the Docker container manually instead of configuring it through your AI assistant's MCP configuration files:
Run the Container
docker run -d \
--name ags-api-mcp-server \
-e AB_BASE_URL=https://yourgame.accelbyte.io \
-e OAUTH_CLIENT_ID=your-client-id \
-e OAUTH_CLIENT_SECRET=your-client-secret \
-p 3000:3000 \
ghcr.io/accelbyte/ags-api-mcp-server:2025.9.0
Note: Replace the placeholder values with your actual AccelByte credentials.
The server will be available at http://localhost:3000/mcp, which you can then add in your VS Code, Cursor, Claude Code, Gemini CLI, or Antigravity configuration.
Configure Your AI Assistant to Use the Running Container
Visual Studio Code
Add to .vscode/mcp.json:
{
"servers": {
"ags-api": { "type": "http", "url": "http://localhost:3000/mcp" }
}
}
Cursor
Add to .cursor/mcp.json:
{
"mcpServers": {
"ags-api": { "type": "http", "url": "http://localhost:3000/mcp" }
}
}
Claude Code
Claude Code uses a different configuration system than Claude Desktop. You can configure MCP servers either via CLI command or by creating a .mcp.json file.
Option 1: Using CLI Command
Run the following command in your terminal:
claude mcp add --transport http ags-api http://localhost:3000/mcp
Option 2: Using .mcp.json File
Create or edit .mcp.json in your project root:
{
"mcpServers": {
"ags-api": { "type": "http", "url": "http://localhost:3000/mcp" }
}
}
Location: .mcp.json in your project root directory
Gemini CLI
Gemini CLI uses a different configuration system. You can configure MCP servers either via CLI command or by editing settings.json.
Option 1: Using CLI Command
Run the following command in your terminal:
gemini mcp add --transport http ags-api http://localhost:3000/mcp
Option 2: Using settings.json File
Edit your Gemini CLI settings file:
User scope: ~/.gemini/settings.json
Project scope: .gemini/settings.json (in your project root)
{
"mcpServers": {
"ags-api": { "type": "http", "url": "http://localhost:3000/mcp" }
}
}
Location:
- User scope:
~/.gemini/settings.json - Project scope:
.gemini/settings.jsonin your project root
Antigravity
Add to mcp_config.json:
{
"mcpServers": {
"ags-api": { "type": "http", "url": "http://localhost:3000/mcp" }
}
}
Documentation
For detailed documentation, see:
- Quick Start Guide - Detailed setup instructions
- API Reference - Complete API documentation
- Environment Variables - Configuration options
- Docker Deployment - Advanced Docker configuration
- Development Guide - Contributing and extending the server
Support
For issues and questions, please open an issue in the repository.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.