Agile Team MCP Server

Agile Team MCP Server

Enables users to leverage a team of specialized AI agent personas like Business Analysts and Product Managers through a unified interface across multiple LLM providers. It streamlines agile development workflows by providing tools for model discovery, unified prompt delivery, and role-specific decision making.

Category
Visit Server

README

Agile Team MCP Server

A team of Agent Personas wrapped in an MCP server that has the ability to leverage at scale massive compute by wrapping various LLM providers to perform activities as an Agile Team Persona.

Features

  • Model Wrapping: Send prompts to multiple LLM models with a unified interface
  • Provider/Model Correction: Automatically correct and validate provider and model names
  • File Support: Send prompts from files and save responses to files
  • Provider/Model Discovery: List available providers and models
  • Persona Tools: Specialized personas like Business Analyst, Product Manager, Spec Writer, and Team Decision Maker

Setup

Installation

# Clone and install
git clone https://github.com/danielscholl/agile-team-mcp-server.git
cd agile-team-mcp-server
uv sync

# Install
uv pip install -e .

# Run tests to verify installation
uv run pytest

Environment Configuration

Create and edit your .env file with your API keys:

# Create environment file from template
cp .env.sample .env

Required API keys in your .env file:

# Required API keys
OPENAI_API_KEY=your_openai_api_key_here
ANTHROPIC_API_KEY=your_anthropic_api_key_here
GEMINI_API_KEY=your_gemini_api_key_here  # For Google Gemini models
GROQ_API_KEY=your_groq_api_key_here
DEEPSEEK_API_KEY=your_deepseek_api_key_here
OLLAMA_HOST=http://localhost:11434

# Optional model configuration
DEFAULT_MODEL=openai:gpt-4o-mini
DEFAULT_TEAM_MODELS=["openai:gpt-4.1","anthropic:claude-3-7-sonnet","gemini:gemini-2.5-pro"]
DEFAULT_DECISION_MAKER_MODEL=openai:gpt-4o-mini

MCP Server Configuration

To utilize this MCP server directly in other projects either use the buttons to install in VSCode, edit the .mcp.json file directory.

Clients tend to have slighty different configurations

Install with UV in VS Code Install with Docker in VS Code

Configure for Claude.app

{
  "mcpServers": {
    "agile-team": {
      "command": "uvx",
      "args": [
        "--from",
        "git+https://github.com/danielscholl/agile-team-mcp-server@main",
        "agile-team"
      ],
      "env": {
        "OPENAI_API_KEY": "<YOUR_OPENAI_KEY>",
        "ANTHROPIC_API_KEY": "<YOUR_ANTHROPIC_KEY>",
        "GEMINI_API_KEY": "<YOUR_GEMINI_KEY>",
        "GROQ_API_KEY": "<YOUR_GROQ_KEY>",
        "DEEPSEEK_API_KEY": "<YOUR_DEEPSEEK_KEY>",
        "OLLAMA_HOST": "http://localhost:11434",
        "DEFAULT_MODEL": "openai:gpt-4o-mini",
        "DEFAULT_TEAM_MODELS": "[\"openai:gpt-4.1\",\"anthropic:claude-3-7-sonnet\",\"gemini:gemini-2.5-pro\"]",
        "DEFAULT_DECISION_MAKER_MODEL": "openai:gpt-4o-mini"
      }
    }
  }
}

Configure for Claude.code

Setting up Agile Team with Claude Code easily by importing it.

claude mcp add-from-claude-desktop

Note: "--directory" would be the path to the source code if not in the same directory.

# Copy this JSON configuration
{
    "command": "uvx",
    "args": ["--from", "git+https://github.com/danielscholl/agile-team-mcp-server@main", "agile-team"],
    "env": {
        "DEFAULT_MODEL": "openai:gpt-4o-mini",
        "DEFAULT_TEAM_MODELS": "[\"openai:gpt-4.1\",\"anthropic:claude-3-7-sonnet\",\"gemini:gemini-2.5-pro\"]",
        "DEFAULT_DECISION_MAKER_MODEL": "openai:gpt-4o-mini"
    }
}

# Then run this command in Claude Code
claude mcp add agile-team "$(pbpaste)"

To remove the configuration later:

claude mcp remove agile-team

Available LLM Providers

Provider Short Prefix Full Prefix Example Usage
OpenAI o openai o:gpt-4o-mini
Anthropic a anthropic a:claude-3-5-haiku
Google Gemini g gemini g:gemini-2.5-pro-exp-03-25
Groq q groq q:llama-3.1-70b-versatile
DeepSeek d deepseek d:deepseek-coder
Ollama l ollama l:llama3.1

Usage

Command Line

Run the server directly:

uv run agile-team

With MCP Client

With a compatible MCP client, you can connect to the server:

mcp use agile-team

Available Prompts

Interactive conversation starters and guided workflows to help you discover and use server capabilities.

List MCP Assets

Get a comprehensive overview of all server capabilities including tools, personas, providers, and workflows.

Parameters: None required

Usage:

# Get complete server capability overview
list_mcp_assets

Returns: Comprehensive markdown documentation including:

  • All available tools with parameters and examples
  • Supported LLM providers with shortcuts and usage examples
  • Agent personas (Business Analyst, Product Manager, Spec Writer, Decision Maker)
  • Quick start workflows for agile team processes
  • Advanced usage patterns and best practices
  • Pro tips for model selection and workflow optimization

This prompt provides a self-documenting overview of the entire agile-team MCP server, making it easy to discover capabilities and get started with productive workflows.

Available Tools

List Available Options

Tools to discover available LLM providers and their supported models.

List Providers Tool

Lists all supported LLM providers and their shortcut prefixes.

Parameters: None required

Examples:

# Simple example
list_providers_tool

List Models Tool

Lists all available models for a specific provider.

Parameters:

Parameter Description Default Value
provider The provider to list models for (e.g., "openai", "anthropic") required

Examples:

# Simple example with full provider name
list_models_tool: "openai"

# Using provider shortcode
list_models_tool: "a"  # Lists Anthropic models

Send Prompts to Models

Send text prompts directly to LLM models and get their responses.

Parameters:

Parameter Description Default Value
text The prompt text to send to the models required
models_prefixed_by_provider List of models in format "provider:model" openai:gpt-4o-mini

Features:

  • Send prompts to one or multiple models simultaneously
  • Use model suffixes for special behaviors:
    • :4k or other numbers for thinking token budgets
    • :high for increased reasoning effort (OpenAI only)

Examples:

# Simple example
prompt_tool: "Create a plan for implementing user authentication"

# Complex example with multiple models and options
prompt_tool: "Analyze the trade-offs between microservices and monoliths" ["openai:gpt-4.1:high", "anthropic:claude-3-7-sonnet:4k"]

Work with Files

Process prompts from files and save responses to files for batch processing.

From File Tool

Parameters:

Parameter Description Default Value
file_path Path to the file containing the prompt required
models_prefixed_by_provider List of models in format "provider:model" openai:gpt-4o-mini

Examples:

# Simple example
prompt_from_file_tool: "prompts/function.md"

# Complex example with specific model
prompt_from_file_tool: "prompts/function.md" ["anthropic:claude-3-7-sonnet-20250219"]

From File to File Tool

Parameters:

Parameter Description Default Value
file_path Path to the file containing the prompt required
models_prefixed_by_provider List of models in format "provider:model" openai:gpt-4o-mini
output_path Full path for the output file Generated based on input
output_dir Directory for response files input file's directory/responses
output_extension File extension for output files md

Examples:

# Simple example
prompt_from_file2file_tool: "prompts/uv_script.md"

# Complex example with specific model, output path and custom extension
prompt_from_file2file_tool: "prompts/diagram.md" ["anthropic:claude-3-7-sonnet"] "prompts/responses/architecture_diagram.md"

Team Decision Making

Use multiple models as team members to generate different solutions, then have a decision maker model evaluate and choose the best approach.

Parameters:

Parameter Description Default Value
from_file Path to the file containing the prompt required
models_prefixed_by_provider List of team member models ["openai:gpt-4.1", "anthropic:claude-3-7-sonnet", "gemini:gemini-2.5-pro"]
persona_dm_model Model for making the decision openai:gpt-4o-mini
output_path Full path for the output document Generated based on input
output_dir Directory for response files input file's directory/responses
output_extension File extension for output files md
persona_prompt Custom decision maker prompt Default template

Examples:

# Simple example
persona_dm_tool: "prompts/decision.md"

# Complex example with custom team and decision maker model
persona_dm_tool: "prompts/decision.md" ["o:gpt-4.1", "a:claude-3-7-sonnet", "g:gemini-2.5-pro-preview-03-25"] persona_dm_model="o:o3" "prompts/responses/final_decision.md"

Business Analyst Persona

Generate detailed business analysis using a specialized Business Analyst persona, with optional team-based decision making.

Capabilities:

  • Creating detailed project briefs and requirement documents
  • Analyzing business needs and market opportunities
  • Defining MVP scope and feature prioritization
  • Identifying target audiences and user personas

Parameters:

Parameter Description Default Value
from_file Path to the file containing business requirements required
models_prefixed_by_provider Models to use in format "provider:model" openai:gpt-4o-mini
output_path Full path for the output document Generated based on input
output_dir Directory for response files input file's directory/responses
output_extension File extension for output files md
use_decision_maker Whether to use team decision making false
decision_maker_models Models for team members if using decision maker ["openai:gpt-4.1", "anthropic:claude-3-7-sonnet", "gemini:gemini-2.5-pro"]
decision_maker_model Model for final decision making openai:gpt-4o-mini

Examples:

# Simple example
persona_ba_tool: "prompts/concept.md" "prompts/responses/project-brief.md"

# Complex example with team-based decision making
persona_ba_tool: "prompts/concept.md" use_decision_maker=true decision_maker_model="o:04-mini" "prompts/responses/project-brief.md"

Product Manager Persona

Generate comprehensive product management plans using a specialized Product Manager persona, with optional team-based decision making.

Capabilities:

  • Creating detailed product plans with prioritized features and clear timelines
  • Developing product vision and strategy
  • Performing market and competitive analysis
  • Defining user stories and requirements
  • Managing cross-functional team collaboration
  • Implementing data-driven decision making

Parameters:

Parameter Description Default Value
from_file Path to the file containing the product requirements required
models_prefixed_by_provider Models to use in format "provider:model" openai:gpt-4o-mini
output_path Full path for the output document Generated based on input
output_dir Directory for response files input file's directory/responses
output_extension File extension for output files md
use_decision_maker Whether to use team decision making false
decision_maker_models Models for team members if using decision maker ["openai:gpt-4.1", "anthropic:claude-3-7-sonnet", "gemini:gemini-2.5-pro"]
decision_maker_model Model for final decision making openai:gpt-4o-mini
pm_prompt Custom Product Manager prompt template Default template
decision_maker_prompt Custom decision maker prompt template Default template

Examples:

# Simple example
persona_pm_tool: "prompts/responses/project-brief.md" "prompts/responses/project-prd.md"

# Complex example with team-based decision making
persona_pm_tool: "prompts/responses/project-brief.md" use_decision_maker=true decision_maker_model="o:gpt-4o-mini" "prompts/responses/project-prd.md"

Spec Writer Persona

Generate clear, developer-ready specification documents from PRDs, project briefs, or user requests using a specialized Spec Writer persona.

Capabilities:

  • Producing technical specifications from PRDs or project briefs
  • Defining step-by-step implementation instructions for developers and AI agents
  • Creating comprehensive specifications with architectural patterns and validation criteria
  • Defining tool behavior, CLI structure, directory layout, and testing plans
  • Using focused, reproducible examples to communicate architectural patterns
  • Ensuring each spec includes validation steps to verify implementation

Parameters:

Parameter Description Default Value
from_file Path to the file containing requirements or PRD required
models_prefixed_by_provider Models to use in format "provider:model" openai:gpt-4o-mini
output_path Full path for the output document Generated based on input
output_dir Directory for response files input file's directory/responses
output_extension File extension for output files md
use_decision_maker Whether to use team decision making false
decision_maker_models Models for team members if using decision maker ["openai:gpt-4.1", "anthropic:claude-3-7-sonnet", "gemini:gemini-2.5-pro"]
decision_maker_model Model for final decision making openai:gpt-4o-mini
sw_prompt Custom Spec Writer prompt template Default template
decision_maker_prompt Custom decision maker prompt template Default template

Examples:

# Simple example - generate a specification from a PRD
persona_sw_tool: "prompts/responses/project-prd.md" "prompts/responses/project-spec.md"

# Complex example with team-based decision making
persona_sw_tool: "prompts/responses/project-prd.md" use_decision_maker=true decision_maker_model=["o:gpt-4o-mini"] "prompts/responses/project-spec.md"

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured