agentic-debugger

agentic-debugger

An MCP (Model Context Protocol) server that enables interactive debugging with code instrumentation for AI coding assistants. Inspired by Cursor's debug mode.

Category
Visit Server

README

agentic-debugger

An MCP (Model Context Protocol) server that enables interactive debugging with code instrumentation for AI coding assistants. Inspired by Cursor's debug mode.

Works with any MCP-compatible AI coding tool:

  • Claude Code
  • Cursor
  • Windsurf
  • Cline
  • GitHub Copilot
  • Kiro
  • Zed
  • And more...

Features

  • Live code instrumentation - Inject debug logging at specific lines
  • Variable capture - Log variable values at runtime
  • Multi-language support - JavaScript, TypeScript, and Python
  • Browser support - CORS-enabled for browser JS debugging
  • Clean removal - Region markers ensure instruments are fully removed

Installation

Using npx (recommended)

Add to your MCP configuration:

{
  "mcpServers": {
    "debug": {
      "command": "npx",
      "args": ["-y", "agentic-debugger"]
    }
  }
}

Configuration file locations:

  • Claude Code: ~/.mcp.json
  • Cursor: .cursor/mcp.json in your project or ~/.cursor/mcp.json
  • Other tools: Check your tool's MCP documentation

Global install

npm install -g agentic-debugger

Then configure:

{
  "mcpServers": {
    "debug": {
      "command": "agentic-debugger"
    }
  }
}

Available Tools

Tool Description
start_debug_session Start HTTP server for log collection
stop_debug_session Stop server and cleanup
add_instrument Insert logging code at file:line
remove_instruments Remove debug code from file(s)
list_instruments Show all active instruments
read_debug_logs Read captured log data
clear_debug_logs Clear the log file

How It Works

  1. Start session - Spawns a local HTTP server (default port 9876)
  2. Add instruments - Injects fetch() calls that POST to the server
  3. Reproduce bug - Run your code, instruments capture variable values
  4. Analyze logs - Read the captured data to identify issues
  5. Cleanup - Remove all instruments and stop the server

Debug Workflow Example

You: "Help me debug why the total is NaN"

AI Assistant:
1. Starts debug session
2. Reads your code to understand the logic
3. Adds instruments at suspicious locations
4. "Please run your code to reproduce the issue"

You: *runs code* "Done"

AI Assistant:
5. Reads debug logs
6. "I see `discount` is undefined at line 15..."
7. Removes instruments
8. Fixes the bug
9. Stops debug session

Instrument Examples

JavaScript/TypeScript

// #region agentic-debug-abc123
fetch('http://localhost:9876/log', {
  method: 'POST',
  headers: { 'Content-Type': 'application/json' },
  body: JSON.stringify({
    id: 'abc123',
    location: 'cart.js:15',
    timestamp: Date.now(),
    data: { total, discount, items }
  })
}).catch(() => {});
// #endregion agentic-debug-abc123

Python

# region agentic-debug-abc123
try:
    import urllib.request as __req, json as __json
    __req.urlopen(__req.Request(
        'http://localhost:9876/log',
        data=__json.dumps({
            'id': 'abc123',
            'location': 'cart.py:15',
            'timestamp': __import__('time').time(),
            'data': {'total': total, 'discount': discount}
        }).encode(),
        headers={'Content-Type': 'application/json'}
    ))
except: pass
# endregion agentic-debug-abc123

Supported Languages

Language Extensions
JavaScript .js, .mjs, .cjs
TypeScript .ts, .tsx
Python .py

Requirements

  • Node.js >= 18.0.0
  • An MCP-compatible AI coding assistant

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured