agentic-debugger
An MCP (Model Context Protocol) server that enables interactive debugging with code instrumentation for AI coding assistants. Inspired by Cursor's debug mode.
README
agentic-debugger
An MCP (Model Context Protocol) server that enables interactive debugging with code instrumentation for AI coding assistants. Inspired by Cursor's debug mode.
Works with any MCP-compatible AI coding tool:
- Claude Code
- Cursor
- Windsurf
- Cline
- GitHub Copilot
- Kiro
- Zed
- And more...
Features
- Live code instrumentation - Inject debug logging at specific lines
- Variable capture - Log variable values at runtime
- Multi-language support - JavaScript, TypeScript, and Python
- Browser support - CORS-enabled for browser JS debugging
- Clean removal - Region markers ensure instruments are fully removed
Installation
Using npx (recommended)
Add to your MCP configuration:
{
"mcpServers": {
"debug": {
"command": "npx",
"args": ["-y", "agentic-debugger"]
}
}
}
Configuration file locations:
- Claude Code:
~/.mcp.json - Cursor:
.cursor/mcp.jsonin your project or~/.cursor/mcp.json - Other tools: Check your tool's MCP documentation
Global install
npm install -g agentic-debugger
Then configure:
{
"mcpServers": {
"debug": {
"command": "agentic-debugger"
}
}
}
Available Tools
| Tool | Description |
|---|---|
start_debug_session |
Start HTTP server for log collection |
stop_debug_session |
Stop server and cleanup |
add_instrument |
Insert logging code at file:line |
remove_instruments |
Remove debug code from file(s) |
list_instruments |
Show all active instruments |
read_debug_logs |
Read captured log data |
clear_debug_logs |
Clear the log file |
How It Works
- Start session - Spawns a local HTTP server (default port 9876)
- Add instruments - Injects
fetch()calls that POST to the server - Reproduce bug - Run your code, instruments capture variable values
- Analyze logs - Read the captured data to identify issues
- Cleanup - Remove all instruments and stop the server
Debug Workflow Example
You: "Help me debug why the total is NaN"
AI Assistant:
1. Starts debug session
2. Reads your code to understand the logic
3. Adds instruments at suspicious locations
4. "Please run your code to reproduce the issue"
You: *runs code* "Done"
AI Assistant:
5. Reads debug logs
6. "I see `discount` is undefined at line 15..."
7. Removes instruments
8. Fixes the bug
9. Stops debug session
Instrument Examples
JavaScript/TypeScript
// #region agentic-debug-abc123
fetch('http://localhost:9876/log', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
id: 'abc123',
location: 'cart.js:15',
timestamp: Date.now(),
data: { total, discount, items }
})
}).catch(() => {});
// #endregion agentic-debug-abc123
Python
# region agentic-debug-abc123
try:
import urllib.request as __req, json as __json
__req.urlopen(__req.Request(
'http://localhost:9876/log',
data=__json.dumps({
'id': 'abc123',
'location': 'cart.py:15',
'timestamp': __import__('time').time(),
'data': {'total': total, 'discount': discount}
}).encode(),
headers={'Content-Type': 'application/json'}
))
except: pass
# endregion agentic-debug-abc123
Supported Languages
| Language | Extensions |
|---|---|
| JavaScript | .js, .mjs, .cjs |
| TypeScript | .ts, .tsx |
| Python | .py |
Requirements
- Node.js >= 18.0.0
- An MCP-compatible AI coding assistant
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.