AAS LanceDB MCP Server
Provides AI agents with database-like operations over LanceDB with automatic BGE-M3 multilingual embedding generation, enabling semantic search, CRUD operations, and safe schema migrations across structured data.
README
AAS LanceDB MCP Server
A comprehensive Model Context Protocol (MCP) server that provides AI agents with database-like operations over LanceDB with automatic embedding generation using state-of-the-art BGE-M3 multilingual embeddings.
โจ Why This MCP Server?
- ๐ฏ Database-like Interface: Works like SQLite MCP - create tables, CRUD operations, migrations
- ๐ค Automatic Embeddings: BGE-M3 generates 1024D multilingual embeddings for searchable text
- ๐ Semantic Search: Natural language search across your data using vector similarity
- ๐ Rich Resources: Dynamic database inspection (schemas, samples, statistics)
- ๐ก Intelligent Prompts: AI guidance for schema design, optimization, troubleshooting
- ๐ก๏ธ Safe Migrations: Built-in table migration with validation and automatic backups
- ๐ Multilingual: BGE-M3 provides excellent performance across 100+ languages
๐ Quick Start
Install & Run with uvx (Recommended)
# Run directly without installation
uvx aas-lancedb-mcp --help
# Or install globally
uv tool install aas-lancedb-mcp
aas-lancedb-mcp --version
Install from Source
git clone https://github.com/applied-ai-systems/aas-lancedb-mcp.git
cd aas-lancedb-mcp
uv tool install .
๐ ๏ธ MCP Capabilities Overview
๐ง 10 Database Tools
| Tool | Purpose | Example |
|---|---|---|
create_table |
Create tables with schema | Create products table with searchable descriptions |
list_tables |
Show all tables | Get overview of database contents |
describe_table |
Get table schema & info | Understand table structure and metadata |
drop_table |
Delete tables | Remove unused tables |
insert |
Add data (auto-embeddings) | Insert product with searchable description |
select |
Query with filtering/sorting | Find products by price range |
update |
Modify data (auto-embeddings) | Update product info with new description |
delete |
Remove rows by conditions | Delete discontinued products |
search |
Semantic text search | "Find sustainable products" โ matches related items |
migrate_table |
Safe schema changes | Add columns or change structure safely |
๐ Dynamic Resources
Resources provide AI agents with real-time database insights:
lancedb://overview- Complete database statistics and table summarylancedb://tables/{name}/schema- Table schema, columns, searchable fieldslancedb://tables/{name}/sample- Sample data for understanding contentslancedb://tables/{name}/stats- Column statistics, data quality metrics
๐ฌ 5 Intelligent Prompts
AI-powered guidance for database operations:
analyze_table- Generate insights about data patterns and qualitydesign_schema- Help design optimal table schemas for use casesoptimize_queries- Performance optimization recommendationstroubleshoot_performance- Diagnose and solve database issuesmigration_planning- Plan safe schema migrations step-by-step
๐ Usage Examples
Creating a Product Catalog
{
"tool": "create_table",
"arguments": {
"schema": {
"name": "products",
"columns": [
{"name": "title", "type": "text", "required": true, "searchable": true},
{"name": "description", "type": "text", "searchable": true},
{"name": "price", "type": "float", "required": true},
{"name": "category", "type": "text", "required": true},
{"name": "metadata", "type": "json"}
],
"description": "E-commerce product catalog with semantic search"
}
}
}
Adding Products (Embeddings Generated Automatically)
{
"tool": "insert",
"arguments": {
"data": {
"table_name": "products",
"data": {
"title": "Eco-Friendly Water Bottle",
"description": "Sustainable stainless steel water bottle with insulation",
"price": 24.99,
"category": "sustainability",
"metadata": {"brand": "EcoLife", "material": "stainless_steel"}
}
}
}
}
Semantic Search (Natural Language)
{
"tool": "search",
"arguments": {
"query": {
"table_name": "products",
"query": "environmentally friendly drinking containers",
"limit": 5
}
}
}
Database Inspection (Resources)
{
"resource": "lancedb://tables/products/sample"
}
Returns sample product data for AI agents to understand the table structure.
AI Guidance (Prompts)
{
"prompt": "design_schema",
"arguments": {
"use_case": "Customer support ticket system",
"data_types": "ticket text, priority levels, timestamps",
"search_requirements": "semantic search across ticket descriptions"
}
}
Returns AI-generated recommendations for optimal table design.
โ๏ธ Configuration
Claude Desktop Setup
Add to claude_desktop_config.json:
{
"mcpServers": {
"aas-lancedb": {
"command": "aas-lancedb-mcp",
"args": ["--db-uri", "~/my_database"],
"env": {
"EMBEDDING_MODEL": "BAAI/bge-m3"
}
}
}
}
Environment Variables
export LANCEDB_URI="./my_database" # Database location
export EMBEDDING_MODEL="BAAI/bge-m3" # Embedding model (default)
export EMBEDDING_DEVICE="cpu" # cpu or cuda
Command Line Options
aas-lancedb-mcp --help # Show help
aas-lancedb-mcp --version # Show version
aas-lancedb-mcp --db-uri ./my_db # Custom database path
๐๏ธ Architecture
Enhanced MCP Server Architecture
โโโ ๐ง Tools (10) - Database operations (CRUD, search, migrate)
โโโ ๐ Resources (dynamic) - Real-time database introspection
โโโ ๐ฌ Prompts (5) - AI guidance for database tasks
โโโ ๐ค BGE-M3 Embeddings - Automatic 1024D multilingual vectors
โโโ ๐ก๏ธ Safe Migrations - Schema evolution with validation
โโโ ๐ Rich Metadata - Column types, constraints, statistics
Key Technical Features
- ๐ฏ Database-like Interface: Familiar SQL-style operations hiding vector complexity
- ๐ค Automatic Embedding Generation: BGE-M3 creates vectors for searchable text columns
- ๐ Hybrid Search: Combine semantic similarity with traditional filtering
- ๐ Dynamic Resources: Real-time database inspection for AI agents
- ๐ก Contextual Prompts: AI guidance using actual database state
- ๐ก๏ธ Migration Safety: Backup, validate, and rollback capabilities
- ๐ Multilingual: BGE-M3 excels across 100+ languages
๐งช Development & Testing
# Clone and setup
git clone https://github.com/applied-ai-systems/aas-lancedb-mcp.git
cd aas-lancedb-mcp
# Install dependencies
uv sync --all-extras
# Run tests
uv run pytest
# Run tests with coverage
uv run pytest --cov=src --cov-report=term-missing
# Format and lint
uv run ruff format .
uv run ruff check .
# Test CLI
uv run aas-lancedb-mcp --help
๐ Performance & Scalability
- BGE-M3 Embeddings: 1024 dimensions, excellent multilingual performance
- LanceDB Backend: Columnar vector database optimized for scale
- Efficient Operations: Automatic embedding caching and batch processing
- Memory Management: Lazy loading and streaming for large datasets
- Search Performance: HNSW indexing for fast vector similarity search
๐ค Contributing
- Fork the repository
- Create feature branch (
git checkout -b feature/amazing-feature) - Make changes with tests (
pytest tests/) - Format code (
uv run ruff format .) - Submit Pull Request
๐ License
MIT License - see LICENSE file for details.
๐ Acknowledgments
- LanceDB - High-performance columnar vector database
- BGE-M3 - State-of-the-art multilingual embeddings
- Model Context Protocol - Standardized AI tool integration
- Sentence Transformers - Easy-to-use embedding framework
๐ Related MCP Projects
- MCP Servers - Official MCP server collection
- FastMCP - Fast Pythonic MCP framework
- SQLite MCP - Database MCP inspiration
Ready to supercharge your AI agents with powerful database capabilities? ๐
uvx aas-lancedb-mcp --help
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.